
Vol.:(0123456789)

SN Applied Sciences            (2021) 3:56  | https://doi.org/10.1007/s42452-020-04069-z	 Research Article

DE algorithm involves three basic operations viz., muta-
tion, recombination, and selection. The step-wise proce-
dure for the development of RBFDE is described below.

Step 1 Randomly initialize i = 1, 2, 3, ., ., .NP number of 
target or population vectors, x⃗i,G between 0 to 1, where 
each ith individual of the population vector represents 
parameters of the RBFDE model. The ith target vector of 
Gth generation, x⃗i,G is given as x⃗i,G =

{
wi , ci , 𝜎i

}
.

Step 2 Repeat step 3 with each target vector x⃗i,G for 
i = 1, 2, 3, ., ., .NP.
Step 3 a) Give K numbers of input patterns to the RBF 
network sequentially with each pattern having dimen-
sion n.
b) For each one of the K input patterns, obtain corre-
sponding network output using ith target vector x⃗i,G 
as the parameters of the network and compare it with 
the corresponding desired output to get an error using 
(3). For K patterns, the K number of error values will be 
obtained.
c) Calculate f

(
x⃗i,G

)
 using (7), where f

(
x⃗i,G

)
 represents the 

fitness function i.e. mean square error (MSE).

Step 4 Obtain fmin

(
x⃗i,G

)
 and represent the corresponding 

x⃗i,G as the x⃗best,G for Gth generation.

(7)f
�
x⃗i,G

�
=

∑K

j=1
e2

K

Step 5 Choose a scaling factor F ∈ [o, 1] and a cross over 
ratio CR, ∈ [o, 1] and repeat step 6 to step 15 until the 
desired minimum MSE is obtained.
Step 6 Repeat the steps from 7 to 8 for i = 1, 2, 3, ., ., .NP 
times
Step 7 Randomly choose two indices r1, r2 from 1 to NP, 
such that, r1 ≠ r2 ≠ i.
Step 8 Compute the mutant vector vi,G for each target 
vector x⃗i,G for Gth generation as

Step 9 Repeat the steps from 10 to 11 for i = 1, 2, 3, ., ., .NP 
times
Step 10 Randomly choose an index r3 between 1 to d 
and repeat step 11 for j = 1 to d, where d is the dimen-
sion of the target or population vector.
Step 11 Generate a random number rand ∈ [o, 1] and 
compute the trial vector U⃗j,i,G by recombination opera-
tion, which replaces the previously successful individu-
als with mutant vector as

(8)v⃗i,G = x⃗i,G + F ∗
(
x⃗r1,G − x⃗r2,G

)
+ F ∗

(
x⃗best,G − x⃗i,G

)
.

(9)U⃗j,i,G =

⎧
⎪⎨⎪⎩

v⃗j,i,G if (rand ≤ CR) or j = r3
else

x⃗j,i,G

.

Fig. 3   Block diagram of RBFNN based estimator
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Step 12 For each trial vector U⃗j,i,G,i = 1, 2, 3, ., ., .NP , evalu-
ate f

(
Ui,G

)
 , which is a mean square error (MSE). (Similar 

to step 3)
Step 13 Repeat the step14 for i = 1, 2, 3, ., ., .NP

Step 14 Finally, the next generation of NP number of 
target/population vector x⃗i,G+1 is selected based on sur-
vival of the fittest criteria as

Step 15 Obtain fmin

(
x⃗i,G+1

)
 and represent it as x⃗best,G+1 for 

the next generation.
Step 16 Stop

Pictorial representation of the DE algorithm is shown 
in Fig. 4.

2.2.3 � Particle swarm optimization based RBF neural 
network estimator

In this approach parameters of the RBFNN model i.e. {wi, ci, 
σi}, as described in Sect. 2.2.1, are updated using the PSO 
algorithm. The PSO [51–53] is a metaheuristics optimiza-
tion algorithm inspired by the paradigm of swarm intelli-
gence which mimics the social behavior of animals like fish 
and birds. It is successfully applied to various applications 
in engineering and science [54–56]. The algorithm uses a 
fixed number of particles that represent the parameters of 
RBFNN. Each particle updates its current velocity and posi-
tion by its own experience called personal best (p-best) 
and by the social experience of the swarm called global 
best (g-best). Steps involved in PSO are briefly described 
below:

Step 1 Initialize fix number of particles with random 
position and velocity uniformly distributed over the 
search space.
Step 2 Evaluate the fitness of each particle according to 
the objective function
Step 3 Record pbest for each particle and g-best of the 
swarm.
Step 4 Update velocity of each particle
Step 5 Update the position of each particle.
Step 6 Update pbest and gbest
Step 7 Repeat the steps from 2 to 6 until the termination 
condition is satisfied and stop.

Pictorial representation of the PSO algorithm is shown 
in Fig. 5.

(10)x⃗i,G+1 =

⎧
⎪⎨⎪⎩

U⃗i,G if f
�
U⃗i,G

�
≤ f

�
x⃗i,G

�
else

x⃗i,G

.

2.2.4 � Multi‑layer artificial neural network (MLANN)

MLANN, suggested by Haykin [57] is successfully employed 
in many applications to solve the regression problem. 
MLANN architecture considered for this proposed inves-
tigation consists of an N-5-1 structure. N represents the 
number of input features. Optimum results are obtained 
with 5 neurons in the intermittent hidden layer. Desired 
ET0 estimates are obtained at output neurons. Hyperbolic 
tangent (tanh) is used as an activation function in every 
processing neuron. The training of the network is done 
by a conventional back-propagation algorithm which is 
based on the error-correcting learning rule to update the 
weights and bias of each neuron in different layers.

2.3 � Empirical models

Weekly ET0 for the study locations is also computed using 
empirical methods of FAO56-PM, Blaney-Criddle, Open 
Pan, Turc, and Hargreaves from available meteorological 
data. A brief description regarding empirical approaches 
considered in this investigation and the corresponding 
input meteorological parameter requirement are listed 
in Table 2. The description regarding different climate 
based empirical methods considered in this investigation 
is not included in this paper. More details regarding these 
empirical approaches can be obtained from basic refer-
ences [1, 5–7].

2.4 � Performance evaluation measures

Comparative analysis of estimated ET0 obtained with dif-
ferent soft computing models and empirical methods 
considered for the investigation is carried out by com-
puting performance evaluation measures, namely, mean 
square percentage error (MAPE), root mean square error 
(RMSE), determination coefficient (R2) and efficiency factor 
(EF) proposed by Nash and Sutcliffe (NSE) [58]. The math-
ematical expression of different evaluation measures is as 
follows.

(11)MAPE =
1

n

n∑
i=1

||(Outobs − Outest)
||

Outobs
×100

(12)RMSE =

√√√√1

n

n∑
i=1

(Outest − Outobs)
2
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Fig. 4   Flowchart differential evolution algorithm
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where Outobs denotes the target and Outest denotes model 
estimated ET0 values. n is the number of testing patterns. 
Low MAPE and RMSE values represent the close agree-
ment between desired and estimated output. Similarly, 

(13)

R2 =

�∑n

i=1

�
Outobs − Outobs

��
Outest − Outest

��2

∑n

i=1

�
Outobs − Outobs

�2 ∑n

i=1

�
Outest − Outest

�2

(14)

EF = NSE = 1 −

∑n

i=1

�
Outest − Outobs

�2
∑n

i=1
(Outobs − Outobs)

2
(−∞ ≤ EF ≤ 1)

R2 and EF values close to 1 are also indicators of a higher 
accuracy level of the model.

3 � Results and discussion

The key objective of this investigation is to examine the 
potential of different evolutionary optimized hybrid 
(RBFDE, RBFPSO) and conventional (RBFNN, MLANN) soft 
computing approaches with available climatic features 
for estimation of ET0 comparable to FAO56-PM ET0. Input 
features combination of different models is decided based 
on empirical approaches of Hargreaves, Turc, Open Pan, 
Blaney-Criddle, and FAO56-PM ET0 listed in the previous 
section. These soft computing models are categorized 

Fig. 5   Flowchart particle swarm optimization algorithm

Table 2   Details of empirical 
models used to compute ET0

Empirical methods Input combination Empirical equation

Hargreaves [5] Tmax, Tmin ET0 = 0.0023 × Ra × Td × 0.5 ×
(
Tm + 17.8

)
Turc [6] Tmax, Tmin, BSS ET0 =

0.40×Tm(Rs+50)

(T+15)

Blaney-Criddle [7] Tmax, Tmin, RH1 & RH2, WS, BSS ET0 = a + b × p
(
0.46 × Tm + 8.13

)
Open Pan [7] WS, EP, RH1 & RH2 ET0 = kp × EP

FAO56-PM [1] Tmax, Tmin, RH1 & RH2, WS, BSS
ET0 =

0.408Δ(Rn−G)+�
900

T+273
u2(es−ea)

Δ+�(1+0.34u2)
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into type I to type V models. Like the Hargreaves method, 
type I models include only Tmax and Tmin as input features, 
whereas Type II soft computing models include BSS with 
temperature, which is equivalent to the Turc approach. 
In type III soft computing models, EP, RH1, RH2, and WS 
are considered as input features similar to that of the 
Open Pan empirical approach. Type IV models include 
six weather parameters (Tmax, Tmin, BSS, WS, and RH1 and 
RH2) equivalent to the Blaney-Criddle empirical approach. 
Another category of soft computing model termed Type V 
models are developed using Tmax, Tmin, BSS, and WS since 
these weather parameters exhibit positive correlations 
with ET0. The input feature EP, which is also positively cor-
related with ET0, is not included in type V soft computing 
models as obtaining EP data is very difficult. Input feature 
combinations used in different types of soft computing 
models and their equivalent empirical models are shown 
in Table 3. Weekly meteorological data of Raipur, Jagdal-
pur, and Ambikapur from 2001 to 2015 (80%) are used for 
model calibration or training, whereas the recent 4 years 
(20%) of the weekly meteorological data from 2016 to 
2019 are used for model validation. 

Soft computing models RBFDE, RBFPSO, RBFNN, and 
MLANN are coded in MATLAB as per the design and the 

learning algorithm described earlier. Simulation studies 
are carried out with a different input features combina-
tion to test the sensitivity of the soft computing approach 
to control parameters until a satisfactory accuracy level is 
achieved for estimation of FAO56-ET0 for different study 
locations. Detailed information regarding modeling strate-
gies and respective control parameters that produce opti-
mum results during the simulation process are shown in 
Table 4 for different soft computing models.

Calibration of RBFDE, RBFPSO, RBFNN, and MLANN 
models is done using the above-listed network parame-
ters with training datasets of all the three study locations, 
Raipur, Jagdalpur, and Ambikapur. During the training pro-
cess, input patterns are given to the model sequentially 
and the corresponding estimated output is obtained at the 
output layer after completion of the forward pass (Fig. 3). 
The estimated output is compared with the correspond-
ing target FAO56-ET0 output to compute the instantane-
ous error cost function. Real-time update of the model 
parameters is done in each instance to minimize the 
squared error using respective evolutionary (DE and PSO) 
and conventional back-propagation learning algorithms 
(RBFNN and MLANN). The process continues until all the 
available training input patterns for model calibration gets 

Table 3   Input feature 
combinations used in soft 
computing and empirical 
models

Type Soft computing models Equivalent 
empirical model

Input feature combinations

RBFDE RBFPSO RBFNN MLANN

I RBFDE1 RBFPSO1 RBFNN1 MLANN1 Hargreaves Tmax, Tmin

II RBFDE2 RBFPSO2 RBFNN2 MLANN2 Turc Tmax, Tmin, BSS
III RBFDE3 RBFPSO3 RBFNN3 MLANN3 Open Pan EP, RH1 & RH2, WS
IV RBFDE4 RBFPSO4 RBFNN4 MLANN4 Blaney-Criddle Tmax, Tmin, RH1 & RH2, WS, BSS
V RBFDE5 RBFPSO5 RBFNN5 MLANN5 – Tmax, Tmin, BSS, WS

Table 4   Parameters of the soft computing models used for simulation

Model parameters RBFDE RBFPSO RBFNN MLANN

Dimension of input features (D) 2, 3, 4 & 6 2,3,4 & 6 2, 3 4 & 6 2,3,4 & 6
Normalization of input features 0 to 1 0 to 1 0 to 1 − 1 to 1
Normalization method xk−xmin

xmin−xman

 , where xk represents kth instance

Initial values of the model parameters 0 to 1 0 to 1 0 to 1 − 1 to 1
Number of centers for RBF based models (c) 10 10 10 –
Number of neurons in intermediate layer – – – 5
Output neuron 1 1 1 1
Activation function Gaussian Gaussian Gaussian tanh
Learning algorithm DE PSO RBF update rules Back-propagation
Convergence coefficients/control parameters/ F = 0.9

CR = 0.9
Constriction coefficient
C1 = C2 = 1.49
Inertia weight w Linearly 

decreased from 0.9 to 0.4

�1 = �2 = �3 = 0.01 � = 0.01

Number of population/particles 5 × d 50 – –
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exhausted. This completes one cycle called an epoch. At 
the end of each epoch, the mean square error is com-
puted and stored for each epoch to examine the learn-
ing characteristic of soft computing models. The iterative 
process is repeated several times until MSE is minimized 
to a desired low value nearly close to zero. This completes 
the supervised learning process and model parameters are 
then fixed to constitute soft computing models. A simi-
lar calibration process is adopted for all soft computing 
approaches.

To test the performance of different soft computing 
models, test data patterns are then presented sequen-
tially at the input layer of the model and through forward 
pass respective estimated ET0 is obtained at the output 
layer for all the test patterns. These ET0 estimates are then 
compared with corresponding target FAO56-PM ET0 val-
ues. Performance evaluation measures, MAPE (%), RMSE 
(mm week−1), R2, and NSE as described in the previous 
section are then computed using desired and estimated 
output of different types of soft computing models and 
equivalent empirical approaches for comparison of model 
performance, which ultimately leads to model selection. 
The computed values of performance evaluation meas-
ures for different types of soft computing models and 

equivalent empirical approaches considered are listed in 
Tables 5 and 6 for all three locations. Comparative results 
of the analysis are discussed below:

	 i.	 For type I soft computing models, MAPE ranges from 
lowest of 7.4 for RBFDE1 and RBFDE2 (at Raipur) to 
highest of 11.8 for MLANN1 (at Jagdalpur), whereas 
MAPE obtained with Hargreaves model is compara-
tively very high and ranges between 22.6 (at Raipur) 
to 30.3 (at Ambikapur).

	 ii.	 Type II soft computing models produce improved 
ET0 estimates with low MAPE compared to type I 
models. For type II models, MAPE ranges from the 
lowest of 4.9 with RBFDE2 (at Raipur) to a high of 
10.2 with MLANN2 (at Raipur). MAPE is again quite 
higher with the equivalent empirical approach of 
Turc, which is obtained between 10.1 (at Jagdalpur) 
to 13.9 (at Raipur).

	 iii.	 Subsequently, for type III models, MAPE values are 
computed close to that of type II models, which 
varied between a lowest of 4.7 with RBFDE3 & 
RBFPSO3 (at Raipur) to a high of 8.0 with MLANN3 
(at Jagdalpur). MAPE for the Open Pan approach var-
ies between 12.2 (at Raipur) to 22.2 (at Ambikapur), 

Table 5   MAPE (%) and RMSE 
(mm week−1) for different 
types of soft computing 
and equivalent empirical 
models with test data sets of 
Ambikapur, Jagdalpur, and 
Raipur

*boldface numbers highlight the best results

Type MODEL Ambikapur Jagdalpur Raipur

MAPE RMSE MAPE RMSE MAPE RMSE

I RBFDE1 8.9* 2.96 10.6 3.63 7.4 2.98
RBFPSO1 9.3 3.04 10.7 3.67 7.4 2.98
RBFNN1 9.3 3.06 10.5 3.79 8.5 3.22
MLANN1 10.0 3.11 11.8 3.88 9.0 3.23
Hargreaves 30.3 7.15 29.0 7.53 22.6 6.13

II RBFDE2 4.9 2.10 5.3 2.74 5.7 2.63
RBFPSO2 5.0 2.10 5.4 2.78 5.9 2.68
RBFNN2 4.9 2.23 5.2 2.81 5.9 3.14
MLANN2 5.1 2.31 6.2 2.93 10.2 3.45
Turc 13.9 3.73 10.1 4.26 13.9 6.54

III RBFDE3 5.9 1.82 7.0 2.18 4.7 1.75
RBFPSO3 6.0 1.89 6.9 2.21 4.7 1.77
RBFNN3 6.3 1.95 7.0 2.27 4.9 1.80
MLANN3 7.8 2.43 8.0 2.48 6.6 2.28
Open-Pan 22.2 6.55 21.7 6.30 16.2 5.05

IV RBFDE4 2.1 0.68 3.7 1.06 1.1 0.36
RBFPSO4 3.4 1.02 3.8 1.10 1.3 0.43
RBFNN4 4.4 1.32 4.1 1.22 2.4 0.82
MLANN4 4.6 1.36 4.4 1.25 3.9 1.29
Blaney-Criddle 22.1 6.12 15.5 4.27 22.6 7.20

V RBFDE5 2.2 0.66 3.4 1.06 1.9 0.80
RBFPSO5 3.9 1.08 3.6 1.08 2.2 0.87
RBFNN5 4.6 1.38 4.7 1.39 2.9 1.07
MLANN5 5.2 1.48 5.2 1.46 4.1 1.31
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which is very high as compared to type III soft com-
puting models.

	 iv.	 Type IV soft computing models yield better results as 
compared to all other types of soft computing and 
empirical models. MAPE ranges between a low of 
1.1 to a high of 3.9 at Raipur, followed by 3.7 to 4.4 at 
Jagdalpur and 2.2 to 4.6 at Ambikapur with RBFDE4 
and MLANN4 respectively. MAPE with the Blaney-
Criddle method is again quite inferior as compared 
to type IV soft computing approaches and ranges 
from 15.5 (at Jagdalpur) to 22.6 (at Raipur).

	 v.	 Type V models also produced good results, as 
reasonably fair estimates of ET0 can be obtained 
between a low MAPE of 1.9 with RBFDE5 (at Raipur) 
to 5.2 with MLANN5 (at Jagdalpur and Ambikapur), 
which is very much comparable to that of type IV 
models, even without taking humidity data as one 
of the input features.

	 vi.	 Regarding RMSE, type I soft computing models 
have resulted in RMSE between 2.98 mm week−1 (at 
Raipur) with RBFDE1 and RBFPSO1 to 3.88 week−1 
(at Jagdalpur) with MLANN1, as against the higher 

RMSE of 6.13 week−1 (at Raipur) to 7.53 mm week−1 
(at Jagdalpur) obtained with Hargreaves approaches.

	 vii.	 Type II soft computing models have produced 
improved RMSE as compared to type I models, which 
ranges between a low of 2.10  mm  week−1 with 
RBFDE2 (at Ambikapur) to a high of 3.45 mm week−1 
with MLANN2 (at Raipur). Interestingly, at Jagdalpur 
the soft computing models produce comparatively 
better estimates of FAO56-PM ET0 in terms of RMSE 
as compared with similar models at Jagdalpur and 
Raipur. In general, type II soft computing models 
have yielded better ET0 estimates as compared to 
Turc methods, for which RMSE ranges between 3.73 
(at Ambikapur) to 6.54 mm week−1 (at Raipur).

	viii.	 Regarding type III models, RMSE has improved 
further and is computed between a low of 
1.75  mm  week−1 with RBFDE3 to a high of 
2.28 mm week−1 with MLANN3 at Raipur, whereas 
the same for Jagdalpur and Ambikapur, it varied 
between a low of 1.82 mm week−1 with RBFDE3 to a 
high of 2.48 mm week−1 with MLANN3. The equiva-
lent empirical method of Open Pan has produced 
higher RMSE, which varied between 5.05 mm week−1 

Table 6   R2 and NSE for 
different types of soft 
computing and equivalent 
empirical models with test 
datasets of Ambikapur, 
Jagdalpur, and Raipur

*boldface numbers highlight the best results

Type MODEL Ambikapur Jagdalpur Raipur

R2 NSE R2 NSE R2 NSE

I RBFDE1 0.949 0.892* 0.878 0.785 0.955 0.932
RBFPSO1 0.950 0.886 0.880 0.781 0.954 0.933
RBFNN1 0.950 0.884 0.876 0.766 0.948 0.922
MLANN1 0.938 0.881 0.871 0.755 0.946 0.921
Hargreaves 0.933 0.371 0.809 0.077 0.900 0.716

II RBFDE2 0.981 0.946 0.955 0.950 0.969 0.948
RBFPSO2 0.980 0.945 0.954 0.948 0.969 0.946
RBFNN2 0.978 0.939 0.950 0.947 0.946 0.926
MLANN2 0.976 0.934 0.948 0.939 0.929 0.910
Turc 0.905 0.829 0.795 0.704 0.833 0.677

III RBFDE3 0.960 0.959 0.934 0.922 0.978 0.977
RBFPSO3 0.956 0.956 0.930 0.920 0.977 0.976
RBFNN3 0.954 0.953 0.931 0.916 0.977 0.976
MLANN3 0.928 0.927 0.908 0.900 0.961 0.961
Open-Pan 0.743 0.472 0.827 0.353 0.947 0.808

IV RBFDE4 0.995 0.994 0.988 0.982 0.999 0.999
RBFPSO4 0.989 0.987 0.986 0.980 0.999 0.999
RBFNN4 0.982 0.978 0.985 0.976 0.996 0.995
MLANN4 0.982 0.977 0.983 0.975 0.990 0.988
Blaney-Criddle 0.826 0.538 0.827 0.703 0.821 0.608

V RBFDE5 0.995 0.995 0.983 0.982 0.996 0.995
RBFPSO5 0.986 0.986 0.983 0.981 0.995 0.994
RBFNN5 0.980 0.976 0.973 0.969 0.993 0.991
MLANN5 0.974 0.973 0.974 0.965 0.988 0.987
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in Raipur to 6.55 mm week−1 at Ambikapur, which is 
almost three times more as compared to type III soft 
computing models.

	 ix.	 Similar to MAPE, type IV soft computing models 
have yielded excellent results in terms of RMSE 
also. In Raipur, RMSE ranges between the lowest 
of 0.36 mm week−1 with RBFDE4 to the highest of 
1.29  mm  week−1 with MLANN4. At Jagdalpur, it 
ranges between 1.06 mm week−1 with RBFDE4 to 
1.25 mm week−1 with MLANN4, whereas at Ambi-
kapur, RMSE ranges between 0.68 mm week−1 with 
RBFDE4 to 1.36 mm week−1 with MLANN4. The low 
RMSE values (< 1 mm week−1) obtained with evo-

lutionary optimized hybrid soft computing models 
(RBFDE4 and RBFDE5) are quite encouraging. This 
demonstrates the potential of the RBFDE4 and 
RBFPSO4 models and these models may consider as 
an alternative to the FAO56-PM empirical approach 
for ET0 estimation in the study area. In contrast, 
Blaney-Criddle has produced very high RMSE, which 
ranges between 4.27 to 7.29 mm/week at different 
locations, similar to that of the Open Pan method.

	 x.	 Type V, soft computing models have also produced 
better results which is quite identical with type IV 
models even without including humidity data as 
an input feature. RMSE with type V models ranges 

Fig. 6   Relationship between estimated ET0 and FAO56-PM ET0 for different soft computing and empirical models with test data sets at 
Ambikapur
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between lowest 0.66  mm  week−1 with RBFDE5 
to highest of 1.48  mm  week−1 with MLANN5 at 
Ambikapur. At Raipur and Jagdalpur, RMSE ranges 
between 0.80 to 1.31 and 1.06 to 1.46 mm week−1 
with RBFDE5 and MLANN5 models respectively.

		    To further examine the relationship between the 
estimated and FAO56-PM ET0, two more statistical 
measures, R2 and NSE are computed for different 
soft computing and empirical models and shown in 
Table 6. The linear relationship between estimated 
ET0 and FAO56-ET0 is also depicted in Figs. 6, 7, and 
8 in Ambikapur, Jagdalpur, and Raipur respectively. 
In general, both R2 and NSE convey similar informa-
tion about the model performance and therefore, 

the marginal difference is observed between these 
two performance evaluation measures within a sim-
ilar type of model in different locations. However, 
sometimes R2 values give a false indication and pro-
duce higher values close to 1 despite a very high 
intercept. In such cases corresponding NSE helps in 
evaluating the model performance.  

	 xi.	 Type IV soft computing models have produced 
better R2 and NSE values as compared to all other 
models considered for investigation. The highest 
R2 values of 0.999, 0.988, and 0.995 are obtained 
with RBFDE4 and RBFPSO4 in Raipur, Jagdalpur, 
and Ambikapur respectively with test data sets. The 
remaining type IV soft computing models also pro-

Fig. 7   Relationship between estimated ET0 and FAO56-PM ET0 for different soft computing and empirical models with test data sets at Jag-
dalpur
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duced good R2 and NSE values as compared to the 
equivalent empirical approach.

	 xii.	 Similar results are obtained with type V soft comput-
ing models, as R2 and the corresponding NSE vary 
between 0.965 to 0.996 in different locations, with 
RBFDE5 and RBFPSO5 being the best models.

	xiii.	 For the type III model, R2 and NSE range between 
0.961 to 0.978 at Raipur and between 0.900 to 0.960 
at Jagdalpur and Ambikapur. R2 and NSE with type II 
soft computing models vary between 0.910 to 0.981. 
Hence, it can be stated that consistent ET0 estimates 
with a fair degree of agreement between estimated 

and target ET0 can be obtained using Type both II 
and III soft computing models.

	xiv.	 Type I soft computing models of RBFDE1 and 
RBFPSO1 have resulted in slightly lower R2 and NSE 
values than RBFNN1 and MLANN1 as compared to 
remaining types mainly as fewer input features are 
involved in computations.

	 xv.	 Inconsistence and low R2 and NSE values that have 
obtained with empirical approaches of Hargreaves, 
Turc, Open Pan, and Blaney Criddle as compared to 
their equivalent soft computing models of respec-
tive types, clearly establish the fact that soft comput-

Fig. 8   Relationship between estimated ET0 and FAO56-PM ET0 for different soft computing and empirical models with test data sets at 
Raipur
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ing models produce better estimates of FAO56-PM 
ET0 than empirical models.

Results of the performance evaluation analysis indi-
cate that the evolutionary optimized hybrid soft com-
puting models considered for the investigation (RBFDE 
and RBFPSO) performed consistently better than other 
conventional soft computing techniques (RBFNN and 
MLANN) and empirical approaches in all the objectives. 
From the inferences, it is also evident that when a com-
plete set of the climatic variable is involved in the com-
putation of ET0 using these models, it looks very difficult 
to choose between RBFDE and RBFPSO as they look sta-
tistically similar in some cases. However, the proposed 
RBFDE is recommended because of its preciseness and 
generalization performance in estimating ET0 in all the 
stations considered for the study.

4 � Conclusions ET0

The present investigation is carried out to examine the 
generalized potential of evolutionary optimized hybrid 
soft computing techniques RBFDE and RBFPSO for the esti-
mation of ET0 in different ACZs. The ET0 estimates obtained 
with proposed RBFDE and RBFPSO models are compared 
to the conventional neural network (RBFNN, MLANN) and 
existing empirical approaches. Looking to the scarcity of 
complete datasets required for computation of FAO-PM ET0, 
four variants of each category of soft computing models 
(RBFDE, RBFPSO, RBFNN, and MLANN) equivalent (in terms 
of input feature combination) to empirical approaches (Har-
greaves, Turc, Open Pan and Blaney-Criddle) is examined. 
It can be concluded that different soft computing models 
considered in this investigation, have resulted in improved 
and more consistent FAO56-PM ET0 estimates as compared 
to equivalent empirical approaches. Among the soft com-
puting models, evolutionary models RBFDE and RBFPSO 
produced a more precise estimation of FAO56-PM ET0 than 
conventional RBFNN and MLANN as proposed RBFDE and 
RBFPSO models resulted in low MAPE and RMSE and high 
R2 and NSE close to 1 in most of the cases. However, ET0 
estimates obtained with the proposed RBFDE seems to be 
slightly better than RBFPSO. Hence, appropriate soft com-
puting models may be recommended for the estimation of 
ET0 in other stations of respective ACZs of the study area. 
The proposed soft computing models may be embedded in 
crop weather simulation models as subroutines for precise 
estimation ET0 with available input features. However, re-
calibration and re-validation of these data-driven models 
are essentially required for their effective implantation in 
other parts of the world.
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a b s t r a c t

The ongoing COVID-19 pandemic has caused global health impacts, and governments
have restricted movements to a certain extent. Such restrictions have led to disruptions
in economic activities. In this paper, the GDP figures for the April–June quarter of
2020 for eight countries, namely, the United States, Mexico, Germany, Italy, Spain,
France, India, and Japan, are forecasted. Considering that artificial neural network models
have higher forecasting accuracy than statistical methods, a multilayer artificial neural
network model is developed in this paper. This model splits the dataset into two parts:
the first with 80% of the observations and the second with 20%. The model then uses the
first part to optimize the forecasting accuracy and then applies the optimized parameters
to the second part of the dataset to assess the model performance. A forecasting error
of less than 2% is achieved by the model during the testing procedure. The forecasted
GDP figures show that the April–June quarter of the current year experienced sharp
declines in GDP for all countries. Moreover, the annualized GDP growth is expected to
reach double-digit negative growth rates. Such alarming prospects require urgent rescue
actions by governments.

© 2020 Economic Society of Australia, Queensland. Published by Elsevier B.V. All rights
reserved.

1. Introduction

The novel coronavirus disease 2019 (COVID-19), which first appeared in Wuhan city, China, in December 2019, has
caused global distress, claiming lives and collapsing economies, as many individuals are connected globally (Acemoglu
et al., 2020; Nakamura and Managi, 2020). Given its deepening threat to human lives and economies, the Director-General
of the World Health Organization (WHO) declared COVID-19 a Public Health Emergency of International Concern (WHO,
2020) on 30th January 2020. Policymakers in every country are under pressure to maintain a balance between containing
the disease by implementing lockdowns and saving the jobs and livelihoods of a large number of people by keeping
economic activities undeterred (Yoo and Managi, 2020). Restrictions on the movements of both people and goods have
disrupted supply chains and accelerated the unemployment problem. Given this consideration, it has become important
for countries to assess the broad economic implications of COVID-19. Macroeconomic indicators represent the health and
stability of a country’s economy. Gross domestic product (GDP), the most widely recognized indicator, accounts for the
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overall goods and services produced within a country. Accurate GDP projections can equip policymakers with tools to
effectively plan for future economic development. In this paper, we develop a multilayer neural network model that can
forecast GDP with minimum error.

Previous methodologies employed in GDP forecasting can be classified into two broad categories. The first emphasizes a
strong theoretical background and applies linear models (Guégan and Rakotomarolahy, 2010). However, concerns with this
approach have been raised due to strong hypotheses on model specification, estimation, and asymptotic properties of the
estimated parameters (Guégan and Rakotomarolahy, 2010). The second, nonlinear models, includes the nearest-neighbors
method and neural network (Härdle et al., 2012; Tkacz, 2001a; Kock and Teräsvirta, 2014). The nearest-neighbors method
uses parametric models and neural networks for nonparametric modeling. Forecasting GDP using a linear autoregressive
model based on the Box–Jenkins approach or multivariate VAR (Box et al., 2015; Bańbura et al., 2010; Balcilar et al., 2015)
is common. Additionally, artificial neural networks (ANNs) have been applied to forecast macroeconomic indicators such
as inflation, exchange rates, oil prices, and interest rates (Hlaváček et al., 2005; Jena et al., 2015; Ali Choudhary and
Haider, 2012; McNelis, 2005; Ramos-Pérez et al., 2019; Szafranek, 2019). Furthermore, ANN models have been used to
forecast GDP in different countries, such as the United States (Loermann and Maas, 2019), China (Shi et al., 2006), Sweden
(Teräsvirta, 2005), Romania (Saman, 2011), and Canada (Tkacz, 2001b). Recently, Torres and Qiu (2018) employed the ANN
method to forecast returns from several cryptocurrencies, exchange rates, commodities, and stocks.

Several studies have demonstrated that ANN models yield more accurate predictions than econometric models (Tkacz,
2001a,b; Ali Choudhary and Haider, 2012; McNelis and McAdam, 2004). Shi et al. (2006) used a neural network with
a genetic algorithm to forecast China’s GDP. The quarterly data employed in the model yielded accurate and efficient
estimates. Jahn (2020) demonstrated that an ANN model yielded better performance than a linear model in predicting the
annual GDP of 15 industrialized economies. Furthermore, Chuku et al. (2019) estimated the GDP for South Africa, Kenya,
and Nigeria and found that an ANN model was superior to traditional econometric models and ARIMA. With increased
exposure to chaotic influences (political factors, external factors, and commodity prices) among different countries, linear
models are becoming less suitable; ANN models are more accurate given their flexibility in modeling (Chuku et al., 2019).

Uncertainty is common in macroeconomic activity, which is a challenge for researchers keen on predicting the future
of such indicators in a constantly changing environment. During the current pandemic period, concerns have been raised
about a future global economic crisis. The International Monetary Fund (IMF) projects a 4.9% decline in global economic
growth for 2020–21: an 8% decline for advanced economies, and 3% and 1% declines for emerging and low-income
economies, respectively (International Monetary Fund, 2020). Similar estimates from the OECD indicated a 0.5 to 1.5%
decline in global economic growth, while the World Bank and Asian Development Bank predicted 2.1% to 3.9% and 2.3%
to 4.8% declines in global economic growth, respectively (RBI, 2020a,b). The increased spread of the pandemic has led
many researchers to estimate the economic consequences of the pandemic outbreak. The studies employing annual data
are not well suited for this purpose, as they focus on long-term forecasting, whereas policy measures must be devised in
the short term. Although a pandemic outbreak usually has both long- and short-term consequences, short-term analysis
is more effective from a policymaking perspective. Quantifying the short-term consequences will lead to better decision
making to overcome the tragedies associated with the pandemic.

Against this backdrop, we developed a multilayer ANN model to accurately predict quarterly GDP figures for 8 major
economies: the United States, Mexico, Germany, Italy, Spain, France, India, and Japan. These countries represent three
continents and have experienced a massive onslaught of COVID-19 spread. The main contribution of this paper to the
forecasting literature is that it provides a well-calibrated nonlinear model that can accurately predict the impact of
a pandemic such as COVID-19. The adaptive model is suitable for analyzing the economic impact of COVID-19. Such
predictive models will provide policymakers with a framework to readjust and reinvigorate their economies and can be
used for predictions in other countries, as well as the global GDP.

The advantages of the ANN model (Sivanandam and Deepa, 2013) are as follows:
(1) Adaptation potential: The model can learn a pattern or predict a value by adjusting the weights of connections

between neurons of different layers.
(2) Self organization: The model organizes itself during the training phase to subsequently perform the desired task.
(3) Real-time operation: After a satisfactory training phase, the model can provide fast prediction and classification

performance because of the parallel operations of the artificial neurons of all layers.
(4) Fault tolerance: Because of the massively interconnected parallel network, the ANN performs satisfactorily even

after a small amount of damage to the network.
The rest of this paper is organized as follows: Section 2 develops the ANN forecasting model; the simulation procedure

of the model is explained in Section 3; the simulation results are presented in Section 4; a discussion of the results is
provided in Section 5; finally, the last section concludes with broad policy messages.

2. Development of the Multilayer Artificial Neural Network (MLANN)-based GDP prediction model

Statistical models are inappropriate for prediction when the data are highly nonlinear, uncorrelated, nonstationary,
and chaotic, (Teräsvirta, 2006). Nonlinear models such as ANNs are required to circumvent this situation. The MLANN is a
multilayered, fully connected, continuously differentiable, nonlinear network that is an appropriate choice to handle the
nonlinearity in data (Haykin, 2009). The steps used in the development of the MLANN-based GDP prediction model are
shown in Fig. 1.
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Fig. 1. Steps followed in the development of the GDP prediction model.

Fig. 2. An MLANN-based GDP prediction model.

The detailed architecture of the MLANN-based prediction model is shown in Fig. 2. Let I, J and K be indices for the
input, hidden and output layers, respectively. I represents the number of inputs in each input pattern, J denotes the
number of neurons in the hidden layer, and K represents the number of neurons in the output layer. In this case, since
the output is one, K = 1. Let there be N input patterns: the ith input pattern is represented as xi. Every input pattern
is applied to the input layer of the MLANN model sequentially, weighted, summed, and passed through the activation
function (tanh) to give the output at the hidden layer. The same process continues for the next layer, and the final output
of the feedforward network is obtained as ok. The output is then compared with the desired value or target value, dk, to
calculate the error. This error value is used along with backpropagation (Haykin, 2009) learning to update the weight and
bias values of the network. The process continues until the squared error is minimized. The ANN is an adaptive model
that iteratively learns from past data during its development stage. Iterative learning means that the connecting weight
of each branch updates its old value during the training phase so that the overall training error progressively decreases as
the number of iterations increases. The weights are adjusted from their initial random values following a weight update
rule known as the back propagation (BP) algorithm. The weight update rules of the BP algorithm are given in Eqs. (6)
to (11). The initial weights are chosen randomly; then, the weights of each path of the network are updated using the
old weight values, inputs to the weights, back propagated error and learning coefficient. The update process continues
until the optimal weights are obtained. The detailed equations for the calculation of the output at each layer and weight
update rules are given below.

Referring to the above figure, the output of the kth output neuron ok is given as

ok = tanh(fk) (1)

where

fk =

J∑
j=1

ojwkj + wbk (2)

oj = output at the jth hidden neuron

wkj = weights between the jth hidden neuron and kth output neuron

wbk = bias at the kth output neuron
Similarly, the output at the jth hidden layer, oj, is calculated as

oj = tanh(fj) (3)
where
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fj =

I∑
i=1

xiwji + wbj (4)

xi = ith input pattern
wji = weights between ith input and jth hidden neuron
wbj = bias at jth hidden neuron

The output of the prediction model ok is compared with the corresponding target value dk to determine the error. Hence,

ek = dk − ok (5)

The weights between the hidden layer and output layer, wkj, are updated using

wkj = wkj + µ ∗ δk ∗ oj (6)

where

δk = ek ×
(1 − o2k)

2
(7)

µ = learning parameter lies between 0 to 1
The bias weight, whose input is always one, is updated as

wbk = wbk + µ ∗ δk (8)

Similarly, the weights between the input layer and the hidden layer, wji, are updated using

wji = wji + µ ∗ δj ∗ xi (9)

where

δj = δk ∗ wkj ∗
(1 − o2j )

2
(10)

The bias weight of the jth neuron in the hidden layer is updated as

wbj = wbj + µ ∗ δj (11)

Eqs. (1)–(11) are the key equations for developing the MLANN-based GDP prediction model.

3. Simulation procedure

The simulation of the MLANN-based GDP prediction model is conducted referring to Fig. 2 and using MATLAB 2016
software. The steps are explained in the following section.

(i) Data collection and normalization: Quarterly GDP data were collected for Japan, China, Germany, Spain, France, Italy,
the USA, and Mexico from https://fred.stlouisfed.org, Economic Research Division, Federal Reserve Bank of St. Louis (FRED
| St. Louis Fed, 2020). For India, the data were collected from the Reserve Bank of India (RBI, 2020a,b). The time period of
the data and details about the data are provided in Table 1. The GDP data are normalized to a range of 0–1 by dividing
each observation by the maximum value of the distribution. Large differences between observations in the data cause
problems during modeling calibration, and normalized data help overcome this problem during the calibration of the
model and increase the convergence speed.

(ii) Feature extraction: Normalization of the data is followed by feature extraction using a sliding window of size three
to generate data patterns or feature patterns. The window is moved over the entire data with a shift of one, and each
time, a group of three values is obtained. If N is the length of the data, then there are N − 2 groups. For the nth group,
x(n), x(n + 1), x(n + 2) are the available values. Every data or input pattern consists of five values, i.e., three values of
the group and the slopes between the 1st and 3rd values and 2nd and 3rd values. Mathematically, these values can be
represented as: {x(n), x(n + 1), x(n + 2), (x(n + 2) − x(n + 1))/x(n + 2), (x(n + 2) − x(n))/x(n + 2)}. Hence, at each time
point, five inputs are fed to the MLANN model in one input pattern, and there are N − 2 patterns in total. Since MLANN
is a supervised learning-based model, the target value is also known and stored. For the nth input data pattern, x(n + 3)
is the required desired value or target value. The total number of patterns generated for each of the datasets is given in
Table 1. Of the total data patterns or input patterns generated, 80% are used to train the model, and the remaining 20%
are used to test the model.

(iii) Training of the model: The development of an MLANN-based GDP prediction model is formulated as an optimization
problem, where the error between the target value and model estimated values is minimized towards zero. Once the
error is nearly zero, the model can predict the correct value of the GDP. A 9:3:1 MLANN structure is used in this paper to
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Table 1
Details of the data.
Sl. no. Name of

country
Length of
time-series

Length of
data

Total number
of patterns
extracted

Total no. of
training
patterns

Total number
of testing
patterns

1 USA 01/01/1990 to
01/10/2020

121 119 97 22

2 Mexico 01/01/1993 to
01/01/2020

109 107 86 21

3 Italy 01/01/1995 to
01/01/2020

101 99 79 20

4 Germany 01/01/1991 to
01/01/2020

117 115 92 23

5 Spain 01/01/1995 to
01/01/2020

101 99 79 20

6 France 01/01/1990 to
01/01/2020

121 119 95 24

7 Japan 01/01/1994 to
01/01/2020

105 103 82 21

8 India 01/04/2011 to
31/03/2020

36 34 28 06

predict GDP. The model has two hidden layers with 9 and 3 neurons and an output layer with one neuron. Initially, all the
connecting weights and bias values are randomly selected between −0.5 and 0.5. The choice of initial values affects the
convergence speed and the final mean square error after the training phase. To make the training process unbiased, the
initial weights are randomly selected. The final weights after the training process may have positive or negative values;
therefore, the initial weights are chosen to be both negative and positive values. Further, to achieve unbiased selection,
the weights are chosen from a uniform distribution with zero mean (unbiased) ranging between −0.5 and 0.5. The total
numbers of weights required between the input layer and first hidden layer, first hidden layer and second hidden layer,
and second hidden layer and output layer are 5 × 9, 9 × 3, and 3 × 1, respectively. Similarly, the numbers of biases are
9, 3, and 1 for the first hidden, second hidden, and output layers, respectively. The first data pattern with five values is
fed to the model, and the input is weighted and passed through an activation function to produce an output at the first
hidden layer. The same process is repeated for the second hidden layer and finally the output layer. The output is then
compared with the corresponding target value to calculate the error. The BP rule is used to update the weights and bias
values using Eqs. (6)–(11). In the same way, all input patterns are fed to the model sequentially, and the weights are
updated until all input patterns are exhausted. This process completes one experiment and is repeated 50,000 times in
10 independent runs. The value of the learning parameter is 0.1. During every experiment, the mean squared error (MSE)
is calculated and plotted to illustrate the convergence characteristics of the model. The error convergence plots during
training are shown in Figs. 4(a)–(h), and a comparison of the actual and predicted values of the model during training is
shown in Figs. 3(a)–(h). Once the error is minimized, the training process is stopped, and the final values of the weights
and biases are saved for testing purposes.

(iv) Testing or validation of the model: Testing or validation of the model is performed using the 20% of the input or
data patterns that are not used during training. The testing patterns are input into the trained model sequentially, and
the output is obtained after weighting, adding, and passing through the activation function. Each of the outputs of the
model is compared with the available target value to calculate the mean absolute percentage error (MAPE) using (12)

MAPE =
1
L

L∑
l=1

abs((a(l) − p(l))/a(l) × 100 (12)

where a(l) = actual value of the lth testing pattern
p(l) = predicted value of the lth testing pattern

4. Simulation results

Figs. 3(a) to 3(h) present a comparison of the actual data and the forecasted estimates in the training process. The
model has been trained accurately to capture the spikes present in the data.

Figs. 4(a) to 4(h) show the MSE of the estimated GDP outputs obtained from the training of the model. The figures
show that the MSE curve starts with a high value but declines with each iteration and finally becomes parallel to the
X-axis, showing that it has reached its minimum. Additional iterations do not further reduce the MSE, and the weights
obtained from the model are optimum.
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Fig. 3. Comparison of Actual and Predicted GDP during Training of the Model.
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Fig. 3. (continued).
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Fig. 3. (continued).

Table 2 below shows the MAPE of the predicted GDP values during testing of the MLANN model for the 8 countries.
The MAPE is an indicator of how close the predicted values are to the actual values. In all countries, the MAPE is 2% or
less, which suggests that the ANN model developed to predict future values is well calibrated. The last column of Table 2
presents the forecasted GDP figures for the 8 countries considered in this study.

A comparison of the actual and predicted values of quarterly GDP for the countries during the testing of the model is
provided in Appendices A and B.

5. Discussion of the results

Table 3 presents the quarter-to-quarter growth rate for Q1 (January–March) and Q2 (April–June) for the 8 major
economies. The Q1 growth rate is estimated using actual data, whereas the Q2 growth rate is based on the percentage
change between the forecasted GDP figure of Q2 and the actual figure for Q1. Furthermore, the annual growth rate for
all countries is given in the last column of Table 3. The quarter-to-quarter and annual growth rates are based on the
following formula:

Quarter GDP Growth (Gq) =
GDPq − GDPq−1

GDPq−1
(13)

GDP Annual (Ga) = (1 + Gq)4 − 1 (14)
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Fig. 4. MSE of Predicted GDP during Training of the Model.
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Fig. 4. (continued).
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Fig. 4. (continued).

Table 2
Mean absolute percentage error (MAPE) of GDP prediction during testing.
Country MAPE during

testing
Forecasted GDP value
for April–June quarter
(in local currency)

India 1.2503 33026
US 1.4458 18454
Germany 1.9925 724250
Japan 2.0429 533590
Italy 0.4479 373980
Spain 1.5360 274840
Mexico 1.9523 4450
France 1.5953 522350

Note: The forecasted GDPs of seven countries are represented in their respective currency — India in
billion Rupee, United States in billion dollars, Germany, Spain, France and Italy in million Euro, Japan in
billion Yen, Mexico in billion pesos.

The extreme severity of COVID-19 has prompted several governments to take necessary precautions based on the

spread of infections. These measures include localized recommendations, national recommendations, and regional and
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Table 3
Quarterly growth rates during COVID-19 shutdown.
Country Quarterly growth

(Jan–Mar, 2020)
based on actual data

Quarterly growth
(Apr–Jun, 2020) based
on forecasted figure

Annual growth
rate

United States −1.29 −2.74 −10.53
Mexico −1.60 −2.14 −8.30
France −5.34 −1.78 −6.95
Spain −5.24 −2.72 −10.45
Italy −5.31 −2.40 −9.26
Germany −2.22 −1.04 −4.11
Japan −0.49 −2.42 −9.35
India 2.38 −2.78 −10.67

Note: Quarterly growth rate represents present quarter to previous quarter growth. Annual growth rate indicates
the growth estimated at an annual rate, including all four quarters.

national lockdowns. As the disease containment measures became increasingly stringent by mid-March 2020, the
disruption of supply chains and slowing of economic activities became drastic. However, a significant decline in worldwide
economic growth was already noted even before COVID-19, mainly due to the trade war between China and the United
States and the steep decline in consumer expenditure (World Economic Outlook Update, 2019).

Table 3 shows that most economies shrank in the 1st quarter of 2020. The United States, the largest economy in
the world, experienced a 1.3% decline in GDP growth in the January to April quarter when compared to the previous
quarter. The US economy initiated regional restrictions on movement based on the severity of the pandemic in mid-March.
However, the first quarter captured only 2 weeks of the lockdown, and the impact loomed large in the second quarter
due to increased pandemic outbreaks and restrictions in different states of the country. Mexico experienced a situation
similar to that of the US, where restrictions were initiated in mid-March and GDP growth fell by 1.6% in the first quarter
of 2020.

While North American countries restricted movements to a certain extent to curb the spread of the disease, European
countries, such as Italy, Spain, Germany, and France — the four largest Euro economies that had the highest number of
infections — imposed a stricter form of lockdown. The strict lockdown measures caused economic contractions of 5.34%,
5.24%, and 5.31% in France, Spain, and Italy, respectively, in the first quarter of 2020. The largest economy of the Eurozone,
Germany, experienced a 2.2% GDP contraction during the same time. Although flattening of the pandemic outbreak curve
was achieved in European countries by the end of June, the second quarter of 2020 may entail a steep decline in GDP due
to the complete shutdown of economic activities.

The greatest impact is observed in countries such as France and Spain, which have a strong dependence on tourism
and the service industry compared to Germany. Asian countries showed modest growth from January to March. India’s
GDP grew at 2.38% in this quarter compared to the previous quarter. India imposed a nationwide lockdown on the 25th of
March 2020. Hence, the January to March growth rate does not reflect the impact of the lockdown; rather, it reflects the
already slowing economy even before the outbreak of COVID-19. Surprisingly, air pollution, as a byproduct of economic
activity, has decreased during this period (Kumar and Managi, 2020). The Japanese economy contracted by 0.5% from
January to March compared to the previous quarter, the second straight decline in economic growth for two consecutive
quarters. Reduced exports amid a trade war between the US and China, followed by a slump in consumer expenditure,
have had a severe impact on the Japanese economy.

The devastating spread of the pandemic and extension of restrictions among several countries has resulted in a steep
decline in economic growth and led to recession (IMF, 2020). The decline in aggregate demand caused increased layoffs,
leading to higher unemployment. The key policies by the central banks of different countries to lower the impact and
induce liquidity are evident. The world economy was on the cliff, with significant events such as geopolitical tensions and
trade wars, and the coronavirus pushed the economy over the edge (World Bank, 2020; United Nations, 2020).

We forecast the GDP growth for the 2nd quarter of 2020 because of the policy implications. The forecasted GDP for the
April to June quarter and the annualized GDP growth indicate a steep decline among the major economies of the world.
The forecasted GDP growth rates in the United States and Mexico are −2.74% and −2.4%, respectively, for the 2nd quarter.
The restrictions in these countries have disrupted the movement of several essential and nonessential goods. However,
what is more concerning is the double-digit decline in annualized GDP growth, which stands at −10.53% and −8.3% in
the US and Mexico, respectively. The decreased demand for petroleum products at home and export goods abroad might
have caused such a substantial negative impact on the US economy. Furthermore, increased unemployment and severe
disruption of service sector-related industries, such as hotels and airlines, may lead to a sharp decline in economic growth
and personal consumption.

The disruption in the Eurozone is expected take quite a long time to recover, as most of the member countries are
heavily dependent on tourism and services. The major economies of the Eurozone – France, Spain, Italy, and Germany
– are predicted to contract by 1.78, 2.72, 2.4. and 1.04%, respectively. The unemployment stimulus package in the Euro
area is smaller than that in the United States due to the widespread use of short-term work policies (World Bank, 2020).
Among Asian countries, Japan prevented the spread of the pandemic by means of national recommendations. Although the
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Table 4
Comparison of GDP annual growth forecasts by our model and other leading global agencies.
Country Our model IMF World Bank Morgan Stanley

United States −10.53 −8 −7.9 −5.8
Mexico −8.30 −10.5 −8.7

France −6.95 −12.5

−10.1 −9.6Spain −10.45 −12.8
Germany −4.11 −7.8
Italy −9.26 −12.8

Japan −9.35 −5.8 −6.8
India −10.67 −4.5 −9 −1.7

Note: The GDP growth rates estimated by various financial agencies were taken from different reports for
comparison purposes.

Japanese economy was opened for trade, a strong contraction in GDP is observed in the second quarter, which follows the
decline experienced from October to December 2019. The spillover effect of the trade war and decline in global aggregate
demand may continue, which would further hinder the growth of the Japanese economy. While predicting Japan’s GDP in
the training dataset (see Fig. 3f), a significant gap was observed between the actual and predicted values for some of the
previous quarters. One explanation of this gap is that the predictive accuracy of a model is affected when an economy faces
frequent uncertain events. This is what occurred for the Japanese economy, as it has been faced with several uncertain
policy decisions resulting from an unsustainable fiscal trajectory, constraints on monetary policy, uncertainty around
world trade policies, and weak growth (Arbatli et al., 2019). A difference between the actual and predicted values of GDP
is also observed for Italy (see Fig. 3e). This prediction error may be explained by the prolonged period of policy uncertainty
in both countries.

In India, a nationwide lockdown was initiated in the last week of March and was continued in the subsequent months
of the next quarter with localized lockdown and nationwide recommendations. The forecasted growth rate of GDP in India
is negative, i.e., −2.78%, and the annualized growth rate for 2020–21 is predicted to be −10.67%. Towards the end of the
April–June quarter, the pandemic was raging through rural areas of the country as the migrant reverse exodus occurred,
in which millions of migrant workers returned to their native rural homes from the cities. At the time of writing this
paper, the pandemic had affected 1.7 million lives in India, and several states were in and out of lockdown. Therefore, a
significant contraction in GDP growth in India, as forecasted by us, is not surprising. While the fiscal stimulus provided
by different central banks would reduce the contraction in the 2nd quarter, the overall economic outlook in most of the
countries in 2020 looks bleak.

In Table 4, the forecasts from the ANN model are compared with the forecasts from leading global agencies to enhance
the understanding of the world economic outlook in 2020. Morgan Stanley’s outlook for 2020 is optimistic, with a V-
shaped recovery, and their forecasts show a modest decline in GDP for the 8 countries we considered. Their optimism
is based on the slender recovery in economic activities observed in May. The projections by the World Bank and IMF
are closer to our forecasts. The forecasted decline in GDP growth for all these countries warrants a strong response from
governments to prevent economies from slipping into recession.

Although past economic shocks have contracted the world economy, the global financial crisis of 2008 was the greatest
slump since the great depression in 1930. Low-interest rate policies, overleveraging, and unsustainable fiscal and monetary
policies led to a global financial crisis, causing a credit crunch and unemployment, which pushed world economies into
a deep recession. World GDP growth slowed from 5% in 2007 to 3.75% in 2008 and 2% in 2009. However, with remedial
measures, such as quantitative easing, financial reforms by the governments and central banks, signs of recovery were
evident in 2010. Other past pandemic outbreaks had negative effects on economies, but they were limited to a few
countries. The 1918 Spanish influenza had a significant impact on major economies. The projected reduction in quarterly
GDP was 2.6% for the United States (Dixon et al., 2010), and strong evidence of a negative effect on capital returns was
found in Sweden (Karlsson et al., 2014). The short-term impact of Ebola on most African economies was negative, as GDP
growth fell by 2.1% in Guinea, 3.4% in Liberia, and 3.3% in Sierra Leone (World Bank, 2014). The specific countries facing
pandemics in the past had a small impact on the world economy, while the COVID-19 pandemic has had a widespread
negative impact on global economic growth and trade. The ongoing trade war and uncertain worldwide events, followed
by the pandemic outbreak, have led to an unprecedented economic crisis. This uncertain nature of the economic impact
of the pandemic has resulted in a gap between the actual and forecasted quarterly GDP growth during the COVID-19
shutdown period. The quarter-to-quarter fluctuations in GDP are the reason for the forecasting error during the shutdown
period. The current model, which has accurately predicted the GDP during the training period, needs improvement to
capture the large fluctuations.

6. Conclusion

The main contribution of this paper is the development of an ANN model to forecast GDP one quarter ahead for eight
major economies. This model captures the nonlinearities present in the quarterly time-series data and provides accurate
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Table A.1
Actual and predicted value obtained during testing pattern.
United States Germany Japan Italy

1 2 1 2 1 2 1 2

1.714 1.713 6.880 6.843 5.293 5.180 3.885 3.873
1.728 1.720 6.939 6.869 5.317 5.262 3.894 3.896
1.741 1.732 6.925 6.927 5.329 5.284 3.913 3.905
1.746 1.743 6.968 6.902 5.316 5.279 3.926 3.928
1.747 1.747 7.000 6.938 5.353 5.270 3.934 3.941
1.756 1.747 7.030 6.967 5.344 5.288 3.955 3.945
1.764 1.755 7.086 6.987 5.353 5.289 3.967 3.971
1.774 1.762 7.127 7.031 5.369 5.288 3.990 3.983
1.782 1.770 7.142 7.058 5.407 5.298 4.004 4.008
1.793 1.777 7.167 7.060 5.432 5.318 4.019 4.022
1.802 1.784 7.253 7.075 5.491 5.331 4.041 4.035
1.816 1.791 7.293 7.139 5.510 5.355 4.041 4.057
1.832 1.801 7.356 7.160 5.475 5.366 4.041 4.051
1.844 1.812 7.410 7.191 5.490 5.348 4.037 4.047
1.860 1.819 7.420 7.218 5.455 5.350 4.044 4.043
1.873 1.829 7.448 7.215 5.463 5.339 4.052 4.051
1.878 1.836 7.441 7.227 5.525 5.338 4.055 4.062
1.893 1.838 7.456 7.220 5.559 5.367 4.056 4.063
1.902 1.846 7.491 7.227 5.581 5.384 4.047 4.062
1.912 1.850 7.473 7.247 5.495 5.390 3.832 4.049
1.922 1.854 7.493 7.233 5.469 5.357
1.898 1.859

Note: The table includes the total number of testing pattern and obtained (1) Actual values and (2) Predicted Values for
different countries.

predictions. These countries have experienced substantial negative health impacts from the ongoing COVID-19 pandemic.
The infection and fatality rates have been alarming, and governments have implemented various forms of lockdown to
contain the disease. As a result, their economies have been disrupted, resulting in the shutting down of many industries
and rising unemployment rates. In such a situation, a clear picture of what lays ahead in terms of economic outlook will
help policymakers take necessary steps. For example, opinion has been divided in the US Congress as to how much relief
is sufficient to restart the economy. The ANN model developed in our paper accurately predicted the GDP figures, as the
MAPE is less than 2% in each of the country cases.

The findings show that the April to June quarters of 2020 will see a significant decline in economic growth in all
eight countries. The annualized GDP growth shows an even larger impact, as most countries will experience double-digit
negative economic growth. Such a scenario is expected, though it requires strong corrective actions by central banks
and governments. The US government has announced a rescue package of $2.2 trillion (The Hindu, 2020), which is the
largest rescue package in recent decades. Joseph Stiglitz, the Nobel laureate in Economic Sciences, in an interview with
the British tabloid The Independent has opined that an even larger rescue package to the tune of $6 trillion (a third of the
US GDP) may be required. Similarly, the Indian government declared a $260 billion coronavirus rescue package (The New
York Times, 2020). This rescue package is supposed to support small- and medium-scale industries and the agriculture
sector, reinstate migrant laborers, and support ailing banks and financial institutions. Furthermore, most central banks
have injected liquidity into the economy by reducing interest rates.
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Table B.1
Actual and predicted value obtained during testing pattern.
France Mexico Spain

1 2 1 2 1 2

5.184 5.175 4.265 4.261 2.667 2.663
5.208 5.178 4.309 4.268 2.691 2.689
5.215 5.201 4.362 4.313 2.717 2.708
5.242 5.205 4.361 4.350 2.736 2.729
5.239 5.227 4.387 4.336 2.747 2.742
5.256 5.221 4.407 4.370 2.771 2.746
5.262 5.235 4.455 4.377 2.784 2.768
5.300 5.239 4.506 4.415 2.805 2.776
5.287 5.271 4.527 4.441 2.834 2.791
5.299 5.256 4.542 4.449 2.849 2.814
5.329 5.264 4.528 4.459 2.869 2.821
5.374 5.290 4.581 4.448 2.883 2.832
5.411 5.323 4.642 4.488 2.899 2.840
5.450 5.346 4.630 4.509 2.913 2.848
5.495 5.368 4.645 4.494 2.930 2.856
5.504 5.393 4.648 4.511 2.946 2.864
5.515 5.394 4.642 4.508 2.957 2.872
5.534 5.398 4.637 4.506 2.969 2.877
5.569 5.408 4.633 4.505 2.982 2.882
5.598 5.427 4.627 4.503 2.825 2.887
5.612 5.440 4.553 4.500
5.624 5.445
5.619 5.449
5.318 5.445

Note: The table includes the total number of testing pattern and obtained (1) Actual values and (2) Predicted Values
for different countries.
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Abstract
In this paper, the teaching–learning-based optimization-based functional link artificial neural network (FLANN) has been 
proposed for the real-time identification of Maglev system. This proposed approach has been compared with some of the 
other state-of-the-art approaches, such as multilayer perceptron–backpropagation, FLANN least mean square, FLANN par-
ticle swarm optimization and FLANN black widow optimization. Further, the real-time Maglev system and the identified 
model are controlled by the Fuzzy PID controller in a closed loop system with proper choice of the controller parameters. 
The efficacy of the identified model is investigated by comparing the response of both the real-time and identified Fuzzy 
PID-controlled Maglev system. To validate the dominance of the proposed model, three nonparametric statistical tests, i.e., 
the sign test, Wilcoxon signed-rank test and Friedman test, are also performed.

Keywords  System identification · Maglev system · FLANN · TLBO · Fuzzy PID

1  Introduction

In the recent past, many articles have been published on the 
identification of a complex system, owing to its widespread 
use in various areas. System identification means the esti-
mation of the parameters of a plant or matching the output 

responses of the model with that of the physical system. Sys-
tem identification is intended to find the deep understanding 
of the cause–effect relationships [1–4]. The nature of the 
system is categorized by different characteristics, such as its 
electrical, physical and chemical properties. However, it is 
very difficult to understand and model such characteristics 
of the plant. Thus, identification is a big challenge in several 
fields like control engineering [5, 6], power system engineer-
ing [7], renewable [8], etc. Accurate and quick identification 
is a difficult task for real-world plants which is mainly due 
to its nonlinear and dynamic nature. Many researchers have 
applied various forms of the artificial neural network (ANN) 
like multilayer perceptron (MLP) [9], functional link artifi-
cial neural network (FLANN) [10, 11], radial basis function 
(RBF) [12, 13], etc., for the identification purpose. By using 
multilayer perceptron (MLP) networks, Narendra and Par-
thasarathy have reported various identification techniques for 
a low complexity dynamic system [14]. However, the MLP 
network has multiple layers, which make it computationally 
expensive for the identification of any complex system. The 
FLANN model which is introduced by Pao et al. [15] is a 
single layer neural network without any hidden layer. The 
FLANN input is functionally expanded with different expan-
sion techniques like power series, trigonometric, Chebyshev 
expansion, etc. This model is having lower computational 
complexity with a fast rate of convergence. The FLANN has 
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been used for pattern classification [16], prediction [17] and 
many other challenging tasks with faster convergence and 
lesser complexity compared to the MLP.

In the training phase of an ANN, all the weights are iter-
atively updated, and they reached the optimal value. The 
methods for updating the weights of a neural network could 
be based on the derivative or free from the derivative. Some 
of the examples of the derivative/gradient based are least 
mean squares (LMS) [6], backpropagation (BP) [2], recur-
sive least squares (RLS) [18], etc. Similarly, examples of 
the second category include bio-inspired or evolutionary 
computing or computational intelligence-based approach. 
In most of the applications, the gradient-based approach 
provides inferior solutions due to the inherent limitations, 
such as trapping at local optimum points and incapability of 
finding derivatives of the discontinuous function.

To eliminate the above shortcomings, derivative-free 
algorithms, such as the genetic algorithm (GA) [19], par-
ticle swarm optimization (PSO) [20–22], and black widow 
optimization (BWO) [23], have been applied by different 
researchers to train the model. Kumar et al. [24] have intro-
duced a metaheuristic-based socio-evolution and learning 
optimization algorithm (SELO) inspired by the social learn-
ing behavior of humans. The performance of the SELO is 
evaluated using 50 benchmark problems and compared with 
the other competitive algorithms. The results show the per-
formance of the SELO is better than the others. Gholiza-
deh et al. [25] have introduced a metaheuristic algorithm, 
i.e., improved fireworks algorithm (IFWA) used for a dis-
crete structural optimizations problems of steel trusses and 
frames. The optimization results demonstrate that the IFWA 
has highly competitive and superior over the standard FWA 
algorithm in terms of the convergence rate and statistical 
analysis. Gholizadeh et al. [26] have proposed a metaheuris-
tic algorithm, center of mass optimization (CMO) to deal 
with performance-based discrete topology optimization 
(PBDTO) problem. PBDTO process is implemented for 
four multi-story steel braced frames by CMO. The authors 
have concluded that the CMO-based PBDTO formulation 
is an efficient technique for the seismic discrete topology 
optimization. Gholizadeh et al. [27] have proposed a new 
and efficient metaheuristic algorithm Newton metaheuristic 
algorithm (NMA) for optimization of steel moment frames. 
The NMA is a population-based framework which uses 
Newton gradient-based method. Here, the authors investi-
gate the effectiveness of the proposed algorithm by consider-
ing two benchmark discrete trusses optimization problems. 
The performance of the proposed algorithm is analyzed on 
the basis of statistical parametric and nonparametric test 
and found to be superior over other competitive algorithms. 
Hayyolalam et al. [23] have proposed a novel black widow 
optimization algorithm (BWO), which is inspired by mating 
behavior of black widow spiders. The efficacy of the BWO 

algorithm is determined by taking 51 different benchmark 
functions. From obtained results, it is confirmed that the 
BWO has better performance and superiority as compared 
to other algorithms. All these optimization techniques may 
be implemented to update the weights of the neural network 
and applied for identification of any system.

However, selecting the proper controlling parameters of 
these derivative-free bio-inspired algorithms is still a chal-
lenging task because of the presence of many controlling 
parameters. Due to these controlling parameters, the weight 
updation of neural network model is complex, computation-
ally expensive and time consuming. Hence, there is a need 
to explore other bio-inspired algorithms with less number of 
controlling parameters. Rao et al. [28] recently came up with 
the TLBO optimization technique to circumvent the above 
shortcomings, which uses the teaching and learning meth-
odology of the teacher and the student in a classroom. They 
highlighted the merits of TLBO that it does not depend on 
any controlling parameters, and only need the algorithm spe-
cific parameters, such as number of populations, iterations 
and stopping criteria. They have stressed on the fact that 
the TLBO eliminates the intricacy of the optimum selection 
and optimization of controlling parameters, which is usually 
necessary in other bio-inspired techniques. Naik et al. [29] 
have concluded that the performance of higher order neural 
networks is sensitive to weight initialization and relies on a 
kind of adopted learning algorithm. They have implemented 
TLBO for the training of ANN’s, and applied it successfully 
for the classification problem. In this manuscript, we have 
implemented TLBO for optimizing weights of a variant of 
ANN, i.e., FLANN for identification of Maglev plant.

In this paper, MLP-BP, FLANN-LMS, FLANN-PSO, 
FLANN-TLBO and FLANN-BWO have been implemented 
for the identification of the Maglev system. The compara-
tive analysis of performance among all these approaches is 
carried out by considering the mean squares error and the 
computational time. Here, a Fuzzy PID controller is also 
implemented to control the identified model, and then, the 
response is compared with that of the Fuzzy PID-controlled 
actual Maglev system.

The organization of the paper is as follows: Introduction 
and the recent work on identification are presented in Sect. 1. 
Section 2 presented and illustrated the construction and prin-
ciple of the Maglev plant as shown in Fig. 1. Discussion of 
related work is presented in Sect. 3, and Sect. 4 highlighted 
the prerequisites of the research work. Section 5 deals with 
the proposed TLBO-based FLANN model for identification 
of the Maglev plant. In Sect. 6, design of controller based on 
the Fuzzy PID is discussed. In Sect. 7, the simulation study, 
validation and nonparametric statistical test of proposed 
model and the results of top-notch models are presented and 
compared. Section 8 presents the contribution of the manu-
script, and the scope of future research work is outlined.
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2 � The Magnetic Levitation Plant

The laboratory setup of the Maglev system from Feedback 
Instruments Ltd., Model No. 33-210 is shown in Fig. 2, and 
it has a wide range of applications like magnetically balanced 
bearings, vibration damping and transportation systems (i.e., 
very popularly known as Maglev trains) [30–33]. Basically, it 
works on the Maglev principle and has two parts: (i) the Mag-
lev plant, and (ii) the digital computer where the controlling 
action takes place. The Maglev system comprises of different 
integrated components, like the electromagnet, ferromagnetic 
ball, IR sensor and a current driver circuit. A digital computer 
provides an immense platform for the effective design of vari-
ous controllers, which can be implemented using MATLAB 
and Simulink for real-time applications. The whole setup accu-
mulates both mechanical and electrical units with I/O interface 
systems.

The Maglev plant parameters are given in Table 1, and its 
transfer function is as follows [34–36]:

(1)Gp(s) =
ΔVo

ΔVi

=
−3518.85

s2 − 2180

where Gp(s) represents the Maglev plant (Feedback 
Instruments Ltd., Model No. 33-210) transfer function, Vo 
is the output voltage of the sensor and Vi is the input voltage 
to the controller. From Eq. (1) and Fig. 3, it is found that 
the behavior of the Maglev system is highly nonlinear and 
unstable in nature. Therefore, it is challenging task to get the 
improved identified model of the Maglev plant.

3 � Related Work

Artificial neural network (ANN) plays an important role in 
the identification of a nonlinear system [37, 38]. The neural 
network (NN) can performed nonlinear mapping between 
the input and output, as it has interconnection between the 
different layers. The neural network can be classified on 
the basis of its input, hidden and output layers. From the 
structural point of view, an ANN may be a single layer or 
multilayers. In a multilayer perceptron (MLP), there may be 
one or many hidden layers in between the input and output 
layers [39]. However, in a single layer structure, no hidden 
layer is present. Each neuron is connected from one layer to 
next layer of other neuron.

The learning of any neural network is a process where 
the weights are updated iteratively. These learning 
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Fig. 1   Schematic diagram of the Maglev system

Fig. 2   The Maglev laboratory setup

Table 1   The physical parameters of the Maglev system

Name of the parameter Symbol Value

Mass of steel ball m 0.02 kg
Control voltage to current gain 

(constant)
k1 1.05 A/V

Sensor gain (constant), offset k2, � 143.48 V/m,  − 2.8 V
Input voltage to the controller Vi + 5 V and − 5 V
Output voltage of sensor Vo  + 1.25 V to − 3.75 V
Equilibrium position of steel ball x0 0.009 m
Current at equilibrium position i0 0.8 A
Gravitational constant g 9.81m∕s2

Fig. 3   Nonlinear response of Maglev system
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processes may be of derivative based or derivative free. 
Some of the standard conventional gradient derivative-
based approaches are LMS, RLS and BP algorithms. 
These have been applied by different researchers to train 
various neural networks and other adaptive models. Simi-
larly, different derivative-free/evolutionary/bio-inspired 
learning algorithms, such as the GA, PSO, ant colony 
optimization (ACO), cat swarm optimization (CSO) and 
TLBO algorithms, are also used to train different neural 
network models.

Derivative-based algorithms are usually based on 
the gradient descent search algorithm and mathemati-
cally derived by utilizing the derivative of error. Least 
mean squares (LMS) are a stochastic gradient method 
or a simple derivative-based algorithm [40]. It is very 
popular, and widely used for its simple structure and ease 
of implementation to minimize the error. It is suitable 
for single layer ANN models for updating the weights. 
Backpropagation (BP) algorithm is derivative-based algo-
rithm, which is suitable for multilayer ANN models [41]. 
The gradient-based optimization techniques fail to solve 
optimizing functions having discontinuities. These tech-
niques may get trapped at local optimum points while 
solving functions having multiple optimal (maxima/
minima) points. To overcome these bottlenecks of the 
traditional derivative-based approaches, different heuris-
tic algorithms have been implemented by researches. The 
PSO, which is based on the principle of the movement 
of a flock of birds that collectively search for food is 
a heuristic algorithm that has better convergence char-
acteristics even for non-convex and discontinuous func-
tions [20, 42]. This algorithm has a better exploration 
capability as the best among the swarm is followed by all 
the individuals along with their own best positions. The 
algorithm has provision for both local and global search 
techniques. The teaching–learning-based optimization 
(TLBO) has no control parameters. It undergoes a two 
phase search; the teacher phase performs a global search 
for better exploration, while the learner phase carries out 
for local search for better exploitation [43–45]. Also, this 
algorithm being dependent only on algorithm specific 
parameters, and without having controlling parameters 
is expected to have a better convergence characteristic is 
discussed in details in Sect. 4. The black widow optimi-
zation is a type of evolutionary-based optimization tech-
nique that imitates the strange mating behavior of the 
black widow spiders [23]. It is one of the latest techniques 
in the evolutionary-based optimization family. It delivers 
fast convergence speed, and avoids local optima problem. 
These techniques update the weights in three stages, i.e., 
procreate, cannibalism (sexual cannibalism and sibling 
cannibalism) and mutation.

4 � Prerequisites

In this paper, a MLP and a special variant of ANN, i.e., 
FLANN is implemented for the identification of the Maglev 
system. FLANN is a type of single layer NN in which, the 
input data is allowed to pass through a functional expansion 
block, and hence, the input is functionally expanded with 
different expansion techniques. The power series expansion, 
trigonometric expansion and Chebyshev expansion are some 
of the mostly used expansion techniques. The Chebyshev 
functional expansion is found to be better for many engineer-
ing applications, and hence, it is considered for the expan-
sion of FLANN inputs for the identification of Maglev sys-
tem in this article. The Chebyshev expansion of input xl , can 
be written as [41, 46, 47],

The higher order polynomials are expanded as per usual 
practice. The output of the functional expansion block is 
multiplied with a set of weights. The basic structure of 
FLANN model that is trained by any adaptive algorithm is 
depicted in Fig. 4.

The lower computational complexity of the FLANN 
model due to its simple single layer structure, and sim-
ple learning algorithms, makes it computationally cheap 
and time efficient [48, 49]. The FLANN model holds the 
advantage of a single layer perceptron (SLP) network and 
an MLP network by evading their shortcomings. Here, the 
adaptive algorithm is the PSO and hence named the model 
as FLANN-PSO model. A set of input signals is given to the 
FLANN-PSO model, and the input of the FLANN model 
is functionally expanded nonlinearly by using the Cheby-
shev functional expansion technique. All the weights have 
been updated by using the PSO algorithm. Simultaneously, 

(2)

T0(xl) = 1 for l = 0

T1(xl) = xl for l = 1

T2(xl) = 2x2
l
− 1 for l = 2

Tl+1(xl) = 2xlTl(xl) − Tl−1(xl) for l > 2

Fig. 4   Structure of the FLANN Model
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a set of weights are initialized in between 0 and 1, and it is 
multiplied with the input signals. The output of each set of 
weights is compared with the same corresponding desired 
(output) signal and each set of weights is considered to be 
one particle. Hence, each set will produce one error signal.

The set of weights whose error is the minimum is consid-
ered to be the global particle. The other particles, i.e., other 
sets of weights, are local particles, and they update their 
velocity and position according to Eqs. (3) and (4):

where Vi(d) and Xi(d) represents the velocity and posi-
tion of the i th particle, respectively, and rand represents the 
random number, which is in between [0,1]. Pg(d) and Pi(d) 
are the position of g-best and p-best, respectively. w is the 
weighting factor, c1 and c2 are the constant whose values 
determine the effect of social and cognitive components.

Once all the particles/set of weights are updated, again the 
error (i.e., objective function) will be calculated by using the 
new sets of weights. According to the minimum error, the 
respective weights will be saved so that it can be compared 
with the previous minimum error. If the current error is 
lesser than the previous one, then the current value is saved 
or the previous one. This process is repeated iteratively for 
a predefined number of times. After a certain epoch, the 
change of error is saturated, and then, the program is termi-
nated. Finally, the optimum weight is reported. The FLANN 
network having this optimum weight is called as the trained 
network, and suitable for testing in the test data.

(3)

Vi(d) = wVi(d) + c1 ∗ rand ∗ (Pi(d) − Xi(d))

+ c2 ∗ rand ∗ (Pg(d) − Xi(d))

(4)Xi(d + 1) = Xi(d) + Vi(d + 1)

5 � Proposed TLBO‑Based FLANN Model

This article presents the metaheuristic TLBO technique 
based on the teaching and learning methodology, which 
helps to update the weights of FLANN [29]. The TLBO 
algorithm simulates a classroom like environment where 
the number of students is the population whose level of 
knowledge is considered as the possible solution set of the 
problem. Hence, the knowledge is defined by its objective 
function in the problem. The students in a classroom learn 
mainly through two processes; one through the teacher, and 
other by interacting between themselves. Thus, TLBO has 
two phases (a) the teacher phase and (b) the learner phase. 
In the ‘teacher phase,’ the learner group learns from the 
teacher, and in the ‘learner phase’ they learn by having dis-
cussions with one another. The most knowledgeable person 
in the classroom is considered as the teacher who shares his 
or her knowledge with the learners, and at every iteration, 
the best learner is considered as a teacher. Different designed 
variables of the optimization problem are analogous to the 
different subjects offered to the students (learners). The 
results (grade) of each learner are equivalent to the fitness 
of the problem. The teacher tries to enhance the knowledge 
of all the learners in accordance with his or her capability. 
The transfer of knowledge also depends on the capability of 
the students (learners).

A set of input signals having window size ‘u,’ i.e., {
x1,x2,x3,....., xu

}
, is given to the proposed FLANN-TLBO 

model and again, and the input of the FLANN model is 
functionally expanded nonlinearly by using the Chebyshev 
functional expansion technique. Simultaneously, random 
sets of weights (equals to number of expanded inputs of 

Fig. 5   Proposed FLANN model 
for identification of Maglev 
system
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the FLANN) are initialized between 0 and 1. Each set is 
multiplied by the expanded input signals. Then, the output 
of the FLANN is compared with the desired signal. Hence, 
it results a set of error signal 

{
e1,e2,e3,....., eu

}
.

Maglev plant input can be expanded by using Chebyshev 
expansion by the following mathematical form [46],

(5)Ti(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

∶

∶

Tk

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

x1

2x2
2
− 1

∶

∶

2xkTk(xk) − Tk−1xk

⎤
⎥⎥⎥⎥⎥⎥⎦

For k>2

Here, xm is the input, 
∧
y

m+u is the output of the FLANN 
model, Ti(n) is the expanded input using Chebyshev 
expansion and wi(n) is the weight vector having Q no. of 
elements. Equation (6) shows the output of the proposed 
model as shown in Fig. 5. The weights set connected with 
the FLANN model is optimized by the TLBO algorithm to 
achieve desired response and the error is

(6)
∧
y

m+u =

Q−1∑
i=1

Ti(n)wi(n)

(7)em+u = ym+u −
∧
y

m+u

Fig. 6   Flowchart of FLANN-
TLBO network

Load input-output data of Maglev System

If previous error < Present error ?

START

Initialize the random sets of 90 weights, number of iteration: 30 
and activation function (tanh) of FLANN-TLBO model

STOP

Is termination criterion satisfied ?

Functionally expand the ten inputs using chebyshev expansion

Assigned the random set of weight and activation function to find 
the error

Store best weight according to minimum error

Generate or update the new sets of weights and again evaluate 
the error

Accept previous 
weight

Accept recent 
weight

Report optimum sets of weights of FLANN-TLBO model

Yes

YesNo

No
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 Here, the total input (m) = 1, 2, …., n-u, input window 
size of FLANN (u) = 10 and n is the no. of expanded input. 5.1 � Teaching phase

A teacher tries to enhance the performance of all the stu-
dents in the class. Considering a class of n students (popula-
tion size), m subjects (number of design variables) the mean 

Fig. 7   Model of Fuzzy PID 
controller

Table 2   Basic rule table for FIS

Row represents the error (e) and column represents 
the derivative of e

NB NS Z PS PB

NB NVB NB NM NS Z
NS NB NM NS Z PS
Z NM NS Z PS PM
PS NS Z PS PM PB
PB Z PS PM PB PVB

Table 3   Linguistic variables 
of FIS POSITIVE VERY BIG PVB

POSITIVE BIG PB
POSITIVE MEDIUM PM
POSITIVE SMALL PS
ZERO Z
NEGATIVE SMALL NS
NEGATIVE MEDIUM NM
NEGATIVE BIG NB
NEGATIVE VERY BIG NVB

 Fig. 8   Membership function of 
input variable
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result of students in subject j can be denoted as Mji for the 
ith iteration. Let the overall best result of all the subjects of 
the whole population obtained for the learner number be 
denoted by kbest . The teacher is the most knowledgeable 
person having the highest fitness value in the class. So, the 
teacher tries to improve the results of the students, for this a 
correction variable derived from the difference between the 

mean results of the kth student and the teacher in subject j 
is defined as

where DM correspond to the difference of mean,Wj,kbest,i 
is the result of the teacher in j th subject, rd is a random 
number between 0 and 1. Tf is called as the teaching factor 
whose value is either 1 or 2. The teaching factor is defined 
randomly as

The solutions are updated as

where Wnew
j,k,i

 is the updated result value of the kth student 
in the jth subject at the i th iteration and Wj,k,i is the existing 
result. However, the updated result will be accepted if it 
satisfies the boundary condition, else it has to be replaced 
by the limiting boundary value. Also, it should have a better 
fitness than that of the existing values; otherwise, it need not 
be replaced. This updated value will act as input to the 
learner phase (Fig. 5).

5.2 � Learner phase

The individual learner enhanced his or her own knowledge 
by interacting with his/her classmates apart from learning 
from the teacher. It is a convention that a learner will learn 
from another learner if the other learner’s knowledge is more 
than his or her. In this phase, two copies p and q are selected 
randomly such that x′

totalpi
≠ x

′

totalqi
 , i.e., the total results as 

updated in the teacher phase do not match. Then, their 
results are updated as:

(8)DMj,k,i = rd × (Wj,kbest,i − Tf × Mji)

(9)Tf = round[1 + rd(0, 1) ∗ (2 − 1)]

(10)Wnew
j,k,i

= Wj,k,i + DMj,k,i

(11)x
��

jpi
= x

�

jpi
+ ri(x

�

jpi
− x

�

jqi
); if x

�

totalpi
< x

�

totalqi

 Fig. 9   Membership function for 
output variable

 Fig. 10   Identified model response with FLANN-BWO

 Fig. 11   MSE plot of FLANN-BWO



Arabian Journal for Science and Engineering	

1 3

where x′′

jpi
 is accepted if its fitness value is better than that of 

x
′

jpi
 ; further, x′′

jpi
 should satisfy the boundary condition. If the 

boundary condition is not satisfied, it should be replaced by 
x
′

jpi
.
The 1st set of updated weights and error values is stored 

for the forthcoming assessment. Again, the TLBO is applied 
to update the next set of weights and matched with the pre-
vious value of weights. The best set of weights, i.e., the 
set of weight having minimum error is considered to be the 
teacher, and the other sets are learners. The parameter of the 
proposed model undergoes the teaching and learning phase 
of TLBO to update the weights of the FLANN network. 
This process has been repeated until the error is less than the 
threshold value. The flowchart describes the detailed process 
of the TLBO-based FLANN model as shown in Fig. 6.

6 � Design of the Fuzzy PID Controller

The universally accepted PID controller is an important 
tool for industrial control and automation, due to its reli-
ability and adaptability [50]. It has the capability to handle 

(12)x
��

jpi
= x

�

jpi
+ ri(x

�

jqi
− x

�

jpi
); if x

�

totalpi
> x

�

totalqi

 Fig. 12   Identified model response with FLANN-TLBO

 Fig. 13   MSE plot of FLANN-TLBO

 Fig. 14   Identified model response with FLANN-PSO

 Fig. 15   MSE plot of FLANN-PSO

 Fig. 16   Identified model response with FLANN-LMS

 Fig. 17   MSE plot of FLANN-LMS
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all the shortcomings of any other controller, and is found 
to be suitable for many of the industrial requirements. 
However, due to the high nonlinearity and uncertainty 
present in different systems, the performance of the PID 
gets degraded. To avoid these bottlenecks and enhance 
the capability of the PID controller, a fuzzy technique has 
been incorporated with the PID controller by researchers 
[51].

The control law associated with PID is as follows:

where kp is the proportional gain, ki is the integral gain, 
kd is the derivative gains, e(t) is the error signal and u(t) is 
the control input.

The intervening system is fuzzified  with two inputs, 
i.e., the system error (e) and derivative of error (ė) , 
obtained from coefficients, Kin1 and Kin2 as shown in Fig. 7. 
These two values match the values between − 1 and 1. 
This leads to assign the membership function in a definite 
manner using the rule Table 2 and the linguistic variable 
Table 3.

For each input, five membership functions are chosen 
and assigned. However, for the output, nine triangular 
membership functions have been defined from − 1 to 1 as 
shown in Figs. 8 and 9, and found from the coefficient 
Kout .

This Fuzzy PID controller has been utilized for validat-
ing our identified model. This controller has been imple-
mented to the identified model, and in the real-time Mag-
lev plant. The responses of the identified model and the 
actual model are compared to investigate the performance 
of the proposed.

7 � Simulation Study

The algorithms were executed in the Acer Aspire V system, 
Window 10 OS, Intel® Core™ i5-3337U CPU @ 1.80 GHz 
processor, RAM of 8 GB and in a MATLAB environment. 
Five different neural network models, i.e., the MLP trained 
by BP, and FLANN networks trained by the LMS, PSO, 

(13)u(t) = kpe(t) + ki ∫ e(t)dt + kd

de(t)

dt

TLBO and BWO algorithms have been implemented for the 
comparative analysis.

7.1 � Performance Analysis

All the possible functional expansions are implemented, and 
we found that the Chebyshev functional expansion model is 
found to be the most effective in our application. Hence, in 
our study, we have utilized the Chebyshev expansion in all 
the four FLANN models for reasonable comparison. The 
error signal which is the difference between the desired sig-
nal and the output of the FLANN network is considered to 
be the cost function. The following parameter have been 
considered for the identification of Maglev system using dif-
ferent algorithms.

Table 4   Comparative results 
of identified model of Maglev 
system

Model No. of iteration Average MSE CPU time (in s) Big O Notation

FLANN-BWO 100 2.28E−07 382.422 O(Ni * (Ps * Fe) * Nt)
FLANN-TLBO 30 2.7498E−08 462.02 O(Ni * (Ps * Fe) * Nt)
FLANN-PSO 20 1.3945E−08 782.43 O(Ni * (Ps * Fe)*Nt)
FLANN-LMS 10 2.47E−07 4.15 O( Ni * Nt)
MLP-BP 20 1.1470E−07 8.96 O(Ni * Nt)

Table 5   Comparative results of MSE of various optimization tech-
niques for 20 independent test runs

Sl. no. MSE

BWO TLBO PSO LMS MLP-BP

1 1.99E−07 6.14E−08 1.20E−07 2.71E−07 1.81E−07
2 2.59E−07 1.16E−08 5.83E−08 2.29E−07 1.12E−07
3 2.72E−07 7.93E−09 1.34E−07 2.23E−07 1.50E−08
4 2.25E−07 8.69E−09 4.04E−08 2.85E−07 1.43E−07
5 2.90E−07 2.01E−08 1.46E−07 2.64E−07 2.16E−07
6 2.28E-07 2.82E-08 1.56E-07 2.36E-07 2.56E-07
7 2.67E-07 2.47E-08 1.04E-07 3.02E-07 2.12E-07
8 2.02E-07 5.15E-08 1.33E-07 3.39E-07 3.30E-08
9 2.88E-07 5.66E-08 1.26E-07 1.72E-07 1.95E-07
10 2.44E-07 3.82E-08 1.56E-07 2.73E-07 1.99E-07
11 2.59E-07 4.77E-09 1.36E-07 2.24E-07 1.68E-07
12 2.62E-07 2.29E-07 1.19E-07 1.73E-07 2.27E-07
13 2.94E-07 7.82E-08 1.38E-07 2.45E-07 1.57E-07
14 2.38E-07 1.42E-07 6.61E-08 2.43E-07 1.89E-07
15 2.71E−07 3.40E−08 3.87E−08 3.09E−07 2.76E−07
16 2.75E−07 6.10E−09 8.38E−08 2.80E−07 3.30E−07
17 3.10E−07 5.90E−09 1.51E−08 1.72E−07 1.57E−07
18 2.83E−07 6.69E−08 1.02E−07 1.78E−07 3.80E−08
19 2.17E−07 6.36E−08 1.18E−07 2.28E−07 1.94E−07
20 1.71E−07 4.84E−09 1.26E−07 3.02E−07 2.86E−07
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In FLANN-LMS: Learning rate ( � ): 0.6, No. of iteration 
(Ni): 10, No. of weights: 90 and Activation function: tanh.

In FLANN-PSO: Learning rate ( � ): 0.6, No. of itera-
tion (Ni): 20, No. of feature (Fe): 20, cognitive parameter: 

c1 = c2 = 2 , Population size (Ps): 45, Inertia rate: 0.9, No. 
of weights: 90 and Activation function: tanh.

In FLANN-TLBO: Population size (Ps): 45, No. of itera-
tion (Ni): 30, No. of feature (Fe): 20, No. of weights: 90 and 
Activation function: tanh.

In FLANN-BWO: Population size (Ps): 45, No. of itera-
tion (Ni): 100, No. of feature (Fe): 20, Procreating rate (PP): 
0.6, Cannibalism rate (CR): 0.675, Mutation rate (PM): 0.4, 
No. of weights: 90 and Activation function: tanh.

In MLP-BP: Learning rate ( � ): 0.6, No. of iteration (Ni): 
20, No. of layer: 3, Node: 5-3-1, No. of weights: 90 and 
Activation function: tanh.

To study the effectiveness of the proposed model, 5000 
samples are taken. In Fig. 11, it is shown that the FLANN-
BWO model has an average MSE of 2.28E−07 after 100 
iterations and the corresponding CPU time 382.422 s. The 
FLANN-TLBO model has an average MSE of 2.7498E−08 
after 30 iterations and CPU time 462.02 s as displayed in 
Fig. 13. But, the FLANN-PSO and MLP-BP models have 
average MSE of 1.3945E−08 and 1.1470E−07, respec-
tively, after 20 iterations each and corresponding CPU time 
is 782.43 s and 8.96 s, respectively, as presented in Figs. 15 
and 19. The gradient-based FLANN-LMS model shown in 
Fig. 17 has an average MSE of 2.47E−07 after 10 itera-
tions and CPU time of 4.15 s, which is the lowest among 
others. By taking the proposed model with different bio-
inspired algorithms, the value of MSE has been reduced 
from 1.1470E−07 to 2.7498E−08, as listed in Table 4. After 
training of the proposed model, the best set of 90 weights, 
which represents the identified model of the Maglev system, 
is listed in Table 6. The fitting and MSE curves of all the 
models are shown in Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18 

Table 6   The best sets of weight 
from FLANN-TLBO model 
(W1 – W90)

W1 0.435779 W19 0.827147 W37 0.155891 W55 0.264486 W73 0.914621

W2 0.682444 W20 0.698345 W38 0.112564 W56 0.82409 W74 0.79115
W3 0.773512 W21 0.320443 W39 0.492218 W57 0.25293 W75 0.958493
W4 − 0.00529 W22 0.953393 W40 0.953885 W58 0.938268 W76 0.787987
W5 0.781096 W23 0.037445 W41 0.334814 W59 0.358586 W77 0.16796
W6 0.500079 W24 0.306598 W42 0.579984 W60 0.204795 W78 0.98138
W7 − 0.03474 W25 0.249404 W43 0.218814 W61 0.258882 W79 1.066246
W8 0.146218 W26 0.633354 W44 0.883247 W62 0.623441 W80 0.81099
W9 0.414602 W27 0.663029 W45 0.387094 W63 0.480284 W81 0.889997
W10 0.875391 W28 0.054693 W46 0.637974 W64 0.219913 W82 0.825227
W11 0.524488 W29 0.357577 W47 0.831112 W65 0.699049 W83 0.832609
W12 0.787741 W30 0.31339 W48 1.022958 W66 0.453451 W84 0.156097
W13 0.303452 W31 0.514109 W49 1.091364 W67 0.417878 W85 0.969134
W14 0.710593 W32 0.577152 W50 0.679307 W68 0.785315 W86 0.955765
W15 0.036209 W33 0.622466 W51 0.270734 W69 0.153927 W87 0.484031
W16 0.281128 W34 0.268449 W52 0.281422 W70 0.625255 W88 0.798993
W17 0.050205 W35 0.672411 W53 0.389655 W71 0.621751 W89 0.140657
W18 0.100993 W36 0.648091 W54 0.851318 W72 0.248435 W90 0.420589

 Fig. 18   Identified model response with MLP-BP

 Fig. 19   MSE plot of MLP-BP
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and 19. The comparative results of MSE and the MSE plot 
are provided for various test runs in Table 5 and Fig. 20.

Here, Ni is the number of iteration, Ps is the number of 
population, Fe is the number of feature and Nt is the number 
of input for training. From the Big O Notation, it shows that 
the FLANN-LMS and MLP-BP have less time complexity 
than the other three algorithms as shown in Table 4. For 
investigating the performance objectively, the Mean Squares 
Error (MSE) is considered as the performance metric. The 
average values of MSE for all the five models by running 
them for 20 independent test runs are shown in Table 4. The 
MSE values for all the models, for each test run in histo-
gram, are shown in Fig. 20. It is clear from Table 4 that the 
MSE values of the FLANN-TLBO algorithm are lowest as 
compared to others, which signify the superior performance 
over the other four competitive networks.

It is depicted from Fig. 21 that the predicted value does 
not match with the actual output and a very large gap exists. 

Hence, the performance is highly unsatisfactory for the 
FLANN-LMS network. There exists high nonlinearity in the 
data of the Maglev system, and hence, the result is highly 
discouraging. The results of the FLANN-TLBO are found 
to be the most matched one as compared to the other four 
networks.

From Figs. 21 and 22, it is demonstrated that the response 
of the FLANN-TLBO model replicates the response of the 
real-time Maglev system and hence it is the best among all 
other competitive models. The performance of the algo-
rithm also depends on the number controlling parameters 
and number of steps associated with weight updation. It 
is because these two parameters increase the computation 
time and the computational complexity. From Table 4, it 
is observed that the FLANN-LMS and FLANN-PSO have 
taken 4.15 s and 782.43 s CPU time, respectively, which are 
the lowest and the highest values. The recently developed 
BWO algorithm-based FLANN network required 382.422 s. 
The LMS algorithm have one step weight updation with one 

Fig. 20   Comparative plot of MSE in various test runs

 Fig. 21   Comparative identified model response  Fig. 22   Comparative error plot
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 Fig. 23   Control of actual Mag-
lev system and identified model 
using Fuzzy PID controller

 Fig. 24   Comparative results of Maglev system and identified model with a Fuzzy PID controller

Table 7   Minimum wins needed 
for the two-tailed sign test at 
� = 0.05 and� = 0.01

No. of cases 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

� = 0.05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
� = 0.01 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17

Table 8   Critical values obtained for the two-tailed sign tests at 
� = 0.05 and � = 0.01 using MSE metric as a triumphant parameter

TLBO BWO PSO LMS MLP-BP

Wins ( +) 20 18 19 17
Loss (−) 0 2 1 3
Detected difference � = 0.05 � = 0.05 � = 0.05 � = 0.05

Table 9   Sign test using MSE metric as a triumphant parameter

Comparison p value h value

TLBO with BWO 0.0008 1
TLBO with PSO 0.0004 1
TLBO with LMS 0.0009 1
TLBO with BP 0.0026 1
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controlling parameter, the PSO have one step weight upda-
tion with three controlling parameters and the MLP have one 
step weight updation with three controlling parameters. The 
recently developed BWO algorithm have two steps weight 
updation with three controlling parameters for which it takes 
higher time and computational complexity. The FLANN-
TLBO model involves two-updation process during the 
teaching and the learning phases, and hence, it takes more 
time of 462.02 s.

7.2 � Validation of Identified Model

The best identified FLANN-TLBO model is chosen for the 
validation purpose. The identified Maglev system obtained 
from the optimal 90 weights is shown in Table 6. This 
model is controlled and validated by using Fuzzy PID con-
troller with proper choice of the controller parameters. The 
FLANN-TLBO model having the optimal set of weights 
is shown in Table 6. The Fuzzy PID controller is used to 
control both the actual Maglev and  the identified model to 
investigate the response as shown in Fig. 23.

The range of membership functions of the Fuzzy PID 
controller is defined from − 1 to 1, as shown in Figs. 8 and 
9. The best responses are obtained after proper tuning of 
the Fuzzy PID controller with the values of kp, ki and kd are 
− 4, − 2 and − 0.2. From Fig. 24, it has been observed that 
the Fuzzy PID-controlled identified model and the actual 
Maglev system exhibit the same response.

7.3 � Nonparametric Statistical Tests

To validate the dominance of the FLANN-TLBO network, 
the pairwise sign test and Wilcoxon signed-rank test are 
carried out. In fact, the sign test and the Wilcoxon signed-
rank test are two well-known nonparametric statistical tests 
proposed for pairwise comparison of the two heuristics 
approaches. Here, we have carried out the test for 20 runs of 
each algorithm to justify a fair comparison. The results are 
listed in Table 8 by considering the average value of MSE 
as the winning parameter. The minimum number of wins 
required to obtain � = 0.05 and� = 0.01 levels of signifi-
cance for one algorithm over another is shown in Table 7. It 
is observed in Table 5 that the FLANN-TLBO model shows 
dominance over all the three other models with a signifi-
cance of � = 0.05.

It is observed from the performance measures of Table 8 
that the TLBO shows a significant improvement over the 
BWO, PSO, LMS and MLP-BP algorithms with a level of 
significance � = 0.05 by taking the detection rate as the win-
ning parameter, and the p value and h value for the sign test 
using the MSE metric as a triumphant parameter listed in 
Table 9. The p value and h value represent the superiority of 
the algorithm over the other competitive algorithms. If the 
p value is less than the level of significance � = 0.05 and h 
value is 1, then the proposed algorithm is superior over the 
other and the null hypothesis can be rejected. If the p value 
is greater than the level of significance � = 0.05 and h value 
is 0, then the proposed algorithm is considered to be inef-
ficient. Similarly, the Wilcoxon signed-rank test, which is 
similar to the paired t test in statistical procedure, and nor-
mally applied to detect the dominance behaviors between the 
two algorithms, is also performed. The performance com-
parison of all the algorithms is listed in Table 10. The results 
presented in Tables 9 and 10 reveal the superiority of the 
TLBO over other competitive algorithms.

To study the supremacy and repeatability of the obtained 
response of the network a nonparametric Friedman test is 
also performed by using the MATLAB. Table 11 shows the 
average rank of the different networks used for identification, 
which signifies that the lower rank networks have higher 
accuracy and performance. The Friedman test parameters 
are given in Table 12, and the critical value is obtained as 
1.6214E−11 from the Friedman test. A null hypothesis con-
cept emerges, if the critical value is less than the significance 

Table 10   Wilcoxon signed test using MSE metric as a triumphant 
parameter

Comparison P value h value

TLBO with BWO 0.0001 1
TLBO with PSO 0.0025 1
TLBO with LMS 0.0001 1
TLBO with BP 0.0003 1

Table 11   Friedman test rank table

Methods BWO TLBO PSO LMS BP

Mean ranks 17 5.2 8.2 17.2 12.4

Table 12   Friedman test 
parameter

Source Sum of 
square (SS)

Degree of free-
dom (DOF)

Mean square (MS) Chi-square Critical value (p)

Columns 141.1 4 35.275 56.44 1.6214E−11
Error 58.9 76 0.775
Total 200 99
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level, i.e., � = 0.05 and it can be rejected. Hence, the domi-
nance of the proposed algorithm over other competitive 
algorithms has been confirmed by performing the sign test, 
Wilcoxon signed-rank test and Friedman test. A null hypoth-
esis concept comes, if the critical value (p value) is less than 
the significance level, i.e., � = 0.05 and it can be rejected. 
The result obtained reveals the supremacy of the TLBO over 
the others.

8 � Conclusion

This article proposed a FLANN-TLBO model that yields 
improved identification and implementation of the Maglev 
plant. The performance of the TLBO-based FLANN model 
is compared with that of the other ANN-based models, 
i.e., MLP-BP, FLANN-LMS, FLANN-PSO and FLANN-
BWO. The estimated models have been compared in terms 
of MSE, CPU time, and the response matching capability 
of the Maglev system. From the simulations, it is perceived 
that the proposed FLANN-TLBO model provides superior 
identification model of the actual Maglev system. The vali-
dation of the proposed FLANN-TLBO model is carried 
out by comparing its performance with the actual Maglev 
system under identical conditions. The results demonstrate 
improved response matching of the identified model and 
the actual system. Moreover, the statistical tests validate 
the dominance of the FLANN-TLBO network over others. 
The outcomes of statistical testing reveal the supremacy of 
the TLBO algorithm in comparison with other competitive 
algorithms with a significance level of � = 0.05 . Further, 
other variants of the neural network and nature-inspired 
algorithm can be applied for achieving better models of 
complex systems.
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ABSTRACT
Homoleptic pyridyl-3(N) functionalized dithiocarbamate complexes
namely, [Zn(L1)2]2 1 (L1 = (C5H4NCH2)2NCS2) and [Cd(L2)2] ∞
2 (L2 = CH3C6H4CH2NCS2CH2C4H3O) have been synthesized and
characterizedbyelemental analysis anddifferent spectroscopic tech-
niques. Single crystal structural studies reveal that compound 1 is
binuclear while, 2 is polymeric structure. The presence of weak inter-
actions between complexes and solvent molecules in the lattice
results in one-dimensional and three-dimensional supramolecular
structures of 1 and 2 respectively. In the case of complex 2, a rare and
significant S···Cl chalcogen bonding interaction was found, which
involve the solvent molecule in chain motifs. Complex2 is a unique
example of homolepticmetal dithiocarbamate complexes exhibiting
such types of interactions. Complexes showed emission in the solid
state. The TGA studies of complexes revealed that complex1 would
be a good precursor for the preparation of ZnS thin film via metal
organic chemical vapor deposition (MOCVD).
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Metal-thiocarboxylate complexes have interesting features in coordination chemistry as well as in ma- 

terial applications along with some role in the biological system. Which are glint by 160 research pa- 

pers and more than 350 metal thiocarboxylate compounds have been reported by the researcher in this 

century. Most of the thiocarboxylate complexes, structurally characterized by single-crystal X-ray diffrac- 

tometer and their applications have been studied in materials and others. The present review surveys the 

syntheses, structures, and applications of metal thiocarboxylates. 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 

For many years metal complexes of thiocarboxylate ligands have 

stimulated considerable interest concerning their synthetic and 

structural aspects. Renewed interest in the chemistry of such com- 

plexes can be witnessed in recent years due to the recognition of 

novel structural features [1-11] and the involvement of these in 

some biological processes [12-26] . Many such complexes have also 

been found to be excellent precursors for various types of sulfide 

materials with interesting optoelectronic properties [ 9 , 11 , 27 , 28 ]. 

Metal sulfides in the forms of powders, thin films, and nanoclus- 

ters have generated a great deal of scientific and technological in- 

terest for different reasons. Several transition metal sulfides exhibit 

interesting properties like semiconductivity, luminescence, pho- 

toconductivity, chemical sensing, catalysis, superconductivity, etc 

[29-35] . The soft synthetic route (Chimie douce) provided by these 

complexes have added further interest in their applications [36- 

38] . The presence of C(O)S unit in thiocarboxylates imparts the ca- 

pability to bind with all types of metal ions; hard, soft, and bor- 

derline and also to stabilize unusual coordination numbers and ge- 

ometries [ 1 , 7 ]. Thiocarboxylate complexes of a few metals have re- 

cently been reported to undergo thiocarboxylic anhydride elimina- 

tion leading to the formation of metal sulfides [ 39 , 40 ]. 

In this review, we have summarized recent (last two decades) 

progress in studies of the syntheses, structures, and applications 

of metal complexes bearing thiocarboxylate ligands ( Table 1 ). The 

following summary is classified according to the group in the pe- 

riodic table. 

E-mail addresses: sbs.bhu@gmail.com , suryabhan.27@ggu.ac.in 

2. Syntheses and types of thiocarboxylic acid 

Several synthetic methods have been employed to prepare var- 

ious thiocarboxylic acids. A brief overview of different procedures 

is given below. Schiff et al prepared thioacetic acid by the treat- 

ment of phosphorus pentasulfide on acetic acid [41] . The same 

compound was also prepared by Clarke et al by passing H 2 S gas 

into acetic anhydride in presence of a small quantity of acetyl chlo- 

ride [42] . Budzikiewicz et al have synthesized different types of 

thiocarboxylic acids containing heterocyclic ring (thiophene, pyri- 

dine, and furan) by applying different methods (either by hydrol- 

ysis of thioacid amide or reaction of carbonyl chloride with KSH) 

[43] . Hildebrand et al synthesized pyridine-2,6-bis(thiocarboxylic) 

acid by reaction of pyridine-2,6-dicarbonyl chloride and saturated 

pyridine with hydrogen disulfide followed by acidification [44] . Re- 

cently thiophene-2-thiocarboxylic was synthesized by the reaction 

of 2-thiophenecarbonyl chloride and thioacetamide in the presence 

of KOH ( Scheme 1 ) [45] . 

The most common method, however, involves the reaction of 

an acid chloride with potassium hydrogen sulfide, followed by its 

acidification ( Scheme 2 ) [ 44 , 46 ]. 

3. Metal thiocarboxylate complexes 

3.1. Alkali and Alkaline earth metal complexes 

In the 21 st century complexes containing thiocarboxylate, lig- 

ands are mostly derived either from transition or main group met- 

als. There are no further reports on thiocarboxylate complexes of 

group 1 and 2 metals after the complexes reported by Kato et al. 

[1] . Lack of new report, possibly less structural variability, and ap- 
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A new copper (I) heteroleptic pyridyl functionalized dithiocarbamate (dtc) complex, [Cu (L)  dppf]
.2H  O.MeOH, (1) (where L = N-benzyl-N-methylpyridyldtc and dppf = diphenyl
phosphinoferrocene) , has been synthesized from the reaction of [Cu  (m-Br)  (k  -P, P-dppf)  ]
and dithiocarbamate ligand (L). The synthesized complex has been characterized by elemental
analysis, spectroscopy techniques (IR,  H,  C, P NMR, and UV-Vis.), And single-crystal X-ray
crystallography. In this heteroleptic complex, the Cu atom forms distorted tetrahedral coordination
geometry. The supramolecular architecture in the complex has been sustained in the solid phase by,
C – H ∙∙∙ O and CH ∙∙∙ π (chelate = CuS  C) interactions. The emission spectrum of the complex has
been studied in DCM solution. The charge-transfer excited state is quenched due to intramolecular
energy transfer from the {Cu (S, S) (P, P)} moiety to the ferrocene therefore dppf-based complex
shows no detectable emission at room temperature. This complex is weakly conducting and exhibit
semiconductor behavior at room temperature.
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Abstract
The present study is an effort to examine the capability of a differential evolution based radial basis function neural 
network (RBFDE) to model weekly reference evapotranspiration (ET0) as a function of climatic parameters in different 
agro-climatic zones (ACZs) of a moist sub-humid region in East-Central India. The ET0 computed using the empirical equa-
tion of Penman–Monteith suggested by the Food and Agricultural Organization (FAO56-PM) is considered as a target 
variable for investigation. The performance of the proposed RBFDE model is compared with particle swarm optimization 
based radial basis function (RBFPSO), radial basis function neural network (RBFNN), multilayer artificial neural network 
(MLANN) models and conventional empirical equations of Hargreaves, Turc, Open-Pan, and Blaney-Criddle. Weekly ET0 
estimates that are obtained using RBFDE, RBFPSO, and RBFNN and MLANN are observed to be more consistent than 
equivalent empirical methods. For a critical analysis of simulation results, mean absolute percentage error (MAPE), root 
means square error (RMSE), determination coefficient (R2) and Nash–Sutcliffe efficiency factor (NSE) is computed. Low 
MAPE and RMSE values along with higher R2 and NSE close to 1, obtained with soft computing models exhibit that, soft 
computing models produce better estimates of ET0 than empirical methods. Among the soft computing models, RBFDE 
provides improved results as compared to RBFPSO, RBFNN, and MLANN models. This method can be extended for ET0 
estimation in other ACZs.

Keywords  ET0 estimation · FAO56-PM · RBFNN · RBFDE · RBFPSO · MLANN · Empirical methods

1  Introduction

In response to atmospheric demand, soil surface evapora-
tion and transpiration from plant occurs simultaneously 
in a cropping field and is termed as evapotranspiration 
(ET) in a combined manner [1]. Approximately two-thirds 
of the total precipitation is consumed by the atmosphere 
in the form of ET [2]. Therefore, ET is considered one of 
the most important water balance components for the 
determination of crop water requirement, length of the 
crop growing season, and associated agro-climatic stud-
ies. Hence, accurate measurement or estimation of ET is 

essential for the planning and effective implementation 
of irrigation and water management practices for prac-
tical applications. Accurate measurement of ET by volu-
metric and gravimetric lysimeter is practically very diffi-
cult because various factors affect the ET process, which 
includes climatic parameters, crop characteristics, soil 
properties, and management practices. Therefore, con-
sumptive use of water from a uniformly distributed grass 
reference crop under nonlimiting conditions is estimated 
for practical purposes and termed as ET0 [3]. In general, ET0 
is computed employing empirical equations as climatic 
parameters being the only factor affecting the ET process. 

 *  Diwakar Naidu, dnaidu1971@gmail.com | 1Department of CSIT, Guru Ghasidas Vishwavidyalaya, Central University, Bilaspur 495009, 
India. 2BRSM College of Agricultural Engineering and Technology and Research Station, Indira Gandhi Krishi Vishwavidyalaya, Mungeli, 
India.
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Solar radiation, temperature, humidity, wind speed, and 
sunshine are the most influential climatic factors which 
contribute to the ET process [1]. Precise estimation of ET0 is 
vital for the efficient utilization of available water resources 
for agricultural purposes.

Several physicals, empirical equations based on radi-
ation, temperature, mass transfer, and water budget 
methods have been derived in the past to determine 
ET0 with different input combinations of meteorological 
parameters. Among these empirical methods, the Pen-
man–Monteith equation is recommended by the Food 
and Agricultural Organization for ET0 estimation (FAO56-
PM) because of its preciseness [1]. FAO56-PM equation 
requires meteorological parameters such as maximum 
and minimum temperatures, relative humidity, sunshine 
hours, wind speed, and solar radiation to determine ET0. 
In developing countries, like India, it is invariably very dif-
ficult to obtain long term meteorological parameters to 
compute ET0 using the FAO56-PM model [4]. Therefore, 
other empirical models like Hargreaves [5], Turc [6], Open 
Pan [7], Blaney-Criddle [7], and Christianson [8], etc., are 
also in use. These empirical equations involve fewer com-
plex variables as compared to FAO56-PM to compute ET0. 
However, ET0 estimates obtained using these models are 
not comparable with FAO56-PM as these methods yield 
more errors and hence their practical applications become 
limited [9].

To address this issue, in recent decades, researchers 
have successfully demonstrated the application of a vari-
ety of computational intelligence based conventional and 
hybrid soft computing techniques for modeling extremely 
complex and non-linear relationship between climatic fac-
tors and ET0 [10–19]. Improved predictions of FAO56-PM 
ET0 are obtained by Wen et al. [20] using a support vector 
machine (SVM) as compared to the artificial neural network 
(ANN) and empirical methods in extremely arid regions 
of China. Partal [21] has developed a hybrid model com-
bining wavelet transformation and radial basis function 
neural network (W-RBF) that outperformed conventional 
RBF, wavelet-multi-linear regression (W-MLR) and empiri-
cal methods of Hargreaves and Turc for daily ET0 estima-
tion with improved accuracy. Kisi and Demir [22] have 
evaluated the potential of multi-layer perceptron (MLP) 
with six different weight update algorithms for modeling 
ET0 and found MLP with the Levenberg-Marquard algo-
rithm produced a better estimate of ETo. In a recent study, 
Dou and Yang [23] have recommended hybrid extreme 
learning machine (ELM) and adaptive neuro-fuzzy infer-
ence system (ANFIS) based models that are more robust 
and flexible in comparison to traditional ELM and ANFIS. 
Adamala [24] has reported improved generalized perfor-
mance of wavelet neural network (WNN) and ANN model 
for estimation of ET0 as compared to linear regression (LR), 

wavelet regression (WR) and Hargreaves (HG) methods for 
the studied locations in different agro-ecological regions 
of India. Sanikhani et al. [25] have applied several artifi-
cial intelligence models including multi-layer perceptron 
(MLP), generalized regression neural network (GRNN), inte-
grated ANFIS systems with grid partitioning (ANFIS-GP) 
and subtractive clustering (AFNIS-SC), radial basis neural 
network (RBNN) and GEP for modeling ET0 in a cross-sta-
tion scenario for different locations in Turkey and dem-
onstrated that AI-based models performed better than 
the empirical equation of Hargreaves-Samani (HS) and its 
calibrated version (CHS).

It is also observed from the literature review that 
researchers have successfully implemented various types 
of hybrid soft computing models combining conventional 
neural networks along with evolutionary computing algo-
rithms for estimation of ET0. Application of nature-inspired 
algorithms such as genetic algorithm (GA), particle swarm 
optimization (PSO), artificial bee colony (ABC), etc., in com-
bination with conventional neural networks like ANN and 
RBNN are investigated in some research publications for 
ET0 estimation [26–30]. A study conducted by Feng et al. 
[31] for estimating FAO56-PM ET0 in a humid region of 
Southwest China reveals that ELM and ANN optimized by 
genetic algorithm (GANN) has resulted in better ET0 esti-
mates than WNN and empirical approaches of Hargreaves, 
Makkink, Priestley–Taylor and Ritchie models. Gocić et al. 
[32] have analyzed the potential of genetic programming 
(GP), support-vector machine-firefly algorithm (SVM-FFA), 
ANN, and SVM-Wavelet soft computing approaches and 
found SVM-Wavelet resulted in improved FAO56-PM ET0 
estimates in Serbia. Mehdizadeh et al. [33] have evaluated 
the performance of gene expression programming (GEP) 
and MARS along with two SVM based hybrid models, SVM-
Polynomial and SVM-RBF for estimation of monthly mean 
ET0 and reported SVM-RBF and MARS outperformed GEP 
and SVM-Poly and also performed better than 16 other 
empirical equations considered for comparison. How-
ever, Mattar and Alazba [34] have confirmed that the GEP 
model performed better than the conventional multilin-
ear regression (MLR) approach in Egypt. Most of the soft 
computing models discussed above are developed under 
a given scenario in terms of study location, the combina-
tion of available input climatic parameters, time scale and 
duration of climatic data, model structure, learning param-
eters, and an optimization algorithm, etc. Therefore, practi-
cally it becomes very difficult to employ these models in a 
new location without proper calibration and validation of 
the model parameters.

To examine the potential of an evolutionary optimized 
soft computing technique, RBFNN in combination with the 
differential evolution algorithm (RBFDE) is introduced here 
for the estimation of ET0 under three different ACZs in the 
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Chhattisgarh region of East-Central India. Differential evo-
lution (DE) is considered because it is a simple algorithm 
in comparison to GA which requires intensive calculations. 
Due to its simplicity, DE is used in various applications 
[35–37]. Technical analysis of DE parameters, hybridization 
of DE with other soft computing techniques, and its practi-
cal applications have been discussed by Das et al. [38]. Dif-
ferent variants over state-of-the-art DE have also been pre-
sented in the literature. Among these, Hui and Suguntham 
[39] suggested ensemble and arithmetic recombination-
based speciation DE for multimodal optimization of com-
mon benchmark problems. Ramdas et al. [40] developed 
a reconstructed mutation strategy for DE and applied the 
same with multilevel image thresholding for improved 
weather radar image segmentation [41]. A DE variant with 
multi-donor mutation strategy and annealing-base local 
search has been developed by Ghosh et al. [42] for optimi-
zation of Lennard-Jones potential function-based molecu-
lar clustering. The effect of DE-based constraint handling 
techniques has been evaluated by Biswas et al. [43] for the 
optimization of power flow systems. One of the authors of 
this investigation has also been engaged in DE based train-
ing of adaptive autoregressive moving average (ARMA) 
model for exchange rate forecasting [44] and development 
of a hybrid system using functional link artificial neural 
network (FLANN) and DE for Odia handwritten numeral 
recognition [45]. The proposed evolutionary optimized 
hybrid structure of RBFDE is developed and used for the 
first time to model FAO56-PM ET0, and therefore it may be 
considered as a novel scientific approach for such applica-
tion. Conventional soft computing techniques like MLANN, 
RBFNN along with empirical methods of Hargreaves, Turc, 
Open Pan, and Blaney-Criddle are considered for compari-
son purposes. Results obtained with RBFDE is also com-
pared with RBFPSO under similar condition. This paper 
is organized into different sections. Section 1 introduces 
the problem formulation, literature reviews, and motiva-
tion behind the investigation. The detailed description of 
the data sets, soft computing techniques, and empirical 
methods are described in the Materials and methods of 
Sect. 2. Simulation results and comparative performance 
evaluation of different models are outlined in the results 
and discussion of Sect. 3. The salient findings of the study 
are summarized in the conclusion section.

2 � Materials and methods

2.1 � Study area and dataset

This investigation is carried out to model weekly ET0 using 
soft computing techniques. Long term weekly mete-
orological data (2001 to 2019) of maximum temperature 

(Tmax), minimum temperature (Tmin), bright sunshine hours 
(BSS), wind speed (WS), morning relative humidity dur-
ing (RH1), afternoon relative humidity (RH2) and weekly 
cumulative pan evaporation (EP) are collected from Raipur, 
Jagdalpur and Ambikapur stations located in three dis-
tinct ACZs of Chhattisgarh region in central India (Fig. 1). 
The climate of Chhattisgarh is moist sub-humid in gen-
eral with an average annual rainfall of 1200–1400 mm and 
annual ET0 losses between 1400 and 1600 mm in different 
ACZs. Data sets are collected from the India Meteorologi-
cal Department (IMD) (https​://mausa​m.imd.gov.in/) certi-
fied observatories located in these stations. These surface 
meteorological observatories follow the World Meteoro-
logical Organization (WMO) guidelines for data collection 
[46]. WMO guidelines for the observational procedure 
and quality control are adopted uniformly in these sur-
face meteorological observatories while data acquisition, 
tabulation, and computation. The online data entry sys-
tem, itself has an inbuilt quality control mechanism to test 
the errors like data format, duplicate records, and incorrect 
units of measurement, impossible values, extremes, and 
outliers.

Descriptive statistics of different meteorological 
parameters in terms of mean, high, low, range, standard 
deviation (SD), and coefficient of variation (CV) are also 
computed to understand data patterns and to ensure the 
quality check of data (Table 1). To measure the strength 
and direction of a linear relationship between two vari-
ables, correlation coefficient (R) between meteorologi-
cal parameters (Tmax. Tmin, BSS, WS, RH1, RH2, and EP) with 
FAO56-PM ET0 are also computed (Table 1). Weekly totals 
of ET0 are computed using the FAO56-PM equation which 
is considered as the target output for model development 
[1].

The pattern of different meteorological parameters con-
sidered as input variables for model development along 
with target variable FAO56-PM ET0 in selected stations is 
represented as box plot arrangements in Fig. 2. The middle 
line of the box plot signifies the median value while the 
upper and lower edges signify 75% and 25% of the data 
set respectively. The highest and lowest limits of the upper 
and lower vertical lines indicate the highest and lowest 
values respectively. The square depicts the simulated 
mean, and the straight-line shows the observed mean.

2.2 � Design of soft computing models

2.2.1 � Radial basis function neural network (RBFNN) based 
estimator

RBFNN is a category of feed-forward neural network with 
a single hidden layer and an output layer formulated by 
Broomhead and Lowe [47]. Pictorial representation of the 

https://mausam.imd.gov.in/
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RBFNN is given in Fig. 3. The processing units termed as 
neurons in the hidden layer are associated with centers, 
c = c1, c2, c3, ., ., ch, and their width � = �1, �2, �3, ., ., .�h, 
where h is the number of neurons in the hidden layer. Each 
neuron in the hidden layer receives the same set of input 
data 

(
X = x1, x2, x3, ., ., ., xn

)
. The centers of every hidden 

neuron have the same dimension as that of the input data, 
i.e. ci ∈ Rn, X ∈ Rn. The output of hidden layer neurons (
�1,�2,�3, ., ., .,�h

)
 are associated with synaptic weights 

(
w1,w2,w3, ., ., .,wh

)
. Output, ∅i of ith hidden layer neuron 

is basically a Gaussian function and is represented by:

where z = ||||x − ci
||||, represents the Euclidian distance 

between input data and the corresponding centers and 
�i = �

(||||X − ci
||||
)
 . The Gaussian function used in each 

hidden layer neuron is a category of radial basis function. 

(1)�i(z) = e
−z2

2�2
i

Fig. 1   Location map of the 
study area
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Finally, the response of the RBFNN at the output layer, for 
a given set of input data is linear in terms of weights and 
computed using the following expression.

Development of the RBFNN for each instant of input data 
and its corresponding output {X, y} is obtained recursively 
by updating the network parameters 

{
wi , ci , �i

}
 to mini-

mize the instantaneous error cost function given as.

The weight update rules to optimize the network param-
eters 

{
wi , ci , �i

}
 at time t are given by following equations 

which are derived using gradient descent algorithm [48].

(2)y =

h∑
i=1

wi�i

(3)e =
1

2

(
yd − y

)2

(4)wi(t + 1) = wi(t) + �1
(
yd − y

)
�i

where yd desired output or target value, cij j
th element of 

the ith center, η1, η2, η3 learning rates for network param-
eters 

{
wi , ci , �i

}
 respectively.

2.2.2 � Differential evolution based RBF neural network 
estimator

Differential evolution (DE) [49, 50] is a simple and effi-
cient global optimization technique based on a heuristic 
method for minimizing a nonlinear function. Using this 
efficient heuristic approach a hybrid structure, RBFDE is 
developed in which total d number of network param-
eters, represented by a parameter vector, x⃗i =

{
wi , ci , 𝜎i

}
 , 

is optimized by the differential evolution algorithm (DE). 

(5)cij(t + 1) = cij(t) +
�2

�2

i

(
yd − y

)
wi�i

(
xj − cij

)

(6)�i(t + 1) = �i(t) +
�3

�3

i

(
yd − y

)
wi�iz

2

i

Table 1   Descriptive statistics 
of weekly meteorological 
parameters (2001–2019) at 
different locations

Parameters Mean High Low Range SD CV R

Raipur (21.14°N, 81.38°E, 289 m)
Tmax (°C) 32.9 46.0 22.0 24.0 4.9 14.8 0.95
Tmin (°C) 20.4 31.5 6.6 24.9 5.8 28.6 0.62
BSS (hours) 6.7 11.1 0.0 11.1 2.6 39.5 0.33
WS (Kmph) 4.9 14.9 0.5 14.4 3.1 62.7 0.44
RH1 (%) 79.5 96.4 25.9 70.5 16.5 20.7 − 0.87
RH2 (%) 43.8 91.0 6.7 84.3 22.2 50.6 − 0.47
EP (mm week−1) 38.0 127.2 10.5 116.7 22.0 58.0 0.97
FAO56-PM ET0 (mm week−1) 29.7 68.7 11.0 57.7 12.2 41.1 1.00
Jagdalpur (19.08°N, 82.01°E, 564 m)
Tmax (°C) 31.0 42.6 23.3 19.3 4.0 12.8 0.93
Tmin (°C) 18.1 28.1 4.3 23.8 5.7 31.2 0.47
BSS (hours) 6.2 11.0 0.0 11.0 2.8 44.9 0.43
WS (Kmph) 4.5 11.6 1.0 10.6 2.0 44.3 0.36
RH1 (%) 86.9 97.7 34.0 63.7 9.4 10.8 − 0.83
RH2 (%) 51.1 95.7 7.4 88.3 20.5 40.1 − 0.56
EP (mm week−1) 29.1 93.4 3.8 89.6 14.6 50.0 0.91
FAO56-PM ET0 (mm week−1) 26.8 61.2 13.0 48.2 8.9 33.3 1.00
Ambikapur (23.12°N, 83.20°E, 604 m)
Tmax (°C) 30.4 43.6 18.9 24.7 5.12 16.9 0.931
Tmin (°C) 17.8 28.9 3.1 25.8 6.32 35.5 0.647
BSS (hours) 7.2 11.1 0.2 10.9 2.59 36.1 0.351
WS (Kmph) 3.5 10.4 0.3 10.1 1.79 50.6 0.616
RH1 (%) 78.8 98.9 25.7 73.2 17.12 21.7 − 0.837
RH2 (%) 46.6 91.6 9.6 82.0 21.62 46.4 − 0.452
EP0 (mm week−1) 31.7 92.5 8.8 83.7 16.19 51.0 0.909
FAO56-PM ET0 (mm week−1) 26.7 61.8 11.5 50.4 10.52 39.4 1.000
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Fig. 2   Box plot of input meteorological parameters and FAO56-PM ET0 in different stations
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DE algorithm involves three basic operations viz., muta-
tion, recombination, and selection. The step-wise proce-
dure for the development of RBFDE is described below.

Step 1 Randomly initialize i = 1, 2, 3, ., ., .NP number of 
target or population vectors, x⃗i,G between 0 to 1, where 
each ith individual of the population vector represents 
parameters of the RBFDE model. The ith target vector of 
Gth generation, x⃗i,G is given as x⃗i,G =

{
wi , ci , 𝜎i

}
.

Step 2 Repeat step 3 with each target vector x⃗i,G for 
i = 1, 2, 3, ., ., .NP.
Step 3 a) Give K numbers of input patterns to the RBF 
network sequentially with each pattern having dimen-
sion n.
b) For each one of the K input patterns, obtain corre-
sponding network output using ith target vector x⃗i,G 
as the parameters of the network and compare it with 
the corresponding desired output to get an error using 
(3). For K patterns, the K number of error values will be 
obtained.
c) Calculate f

(
x⃗i,G

)
 using (7), where f

(
x⃗i,G

)
 represents the 

fitness function i.e. mean square error (MSE).

Step 4 Obtain fmin

(
x⃗i,G

)
 and represent the corresponding 

x⃗i,G as the x⃗best,G for Gth generation.

(7)f
�
x⃗i,G

�
=

∑K

j=1
e2

K

Step 5 Choose a scaling factor F ∈ [o, 1] and a cross over 
ratio CR, ∈ [o, 1] and repeat step 6 to step 15 until the 
desired minimum MSE is obtained.
Step 6 Repeat the steps from 7 to 8 for i = 1, 2, 3, ., ., .NP 
times
Step 7 Randomly choose two indices r1, r2 from 1 to NP, 
such that, r1 ≠ r2 ≠ i.
Step 8 Compute the mutant vector vi,G for each target 
vector x⃗i,G for Gth generation as

Step 9 Repeat the steps from 10 to 11 for i = 1, 2, 3, ., ., .NP 
times
Step 10 Randomly choose an index r3 between 1 to d 
and repeat step 11 for j = 1 to d, where d is the dimen-
sion of the target or population vector.
Step 11 Generate a random number rand ∈ [o, 1] and 
compute the trial vector U⃗j,i,G by recombination opera-
tion, which replaces the previously successful individu-
als with mutant vector as

(8)v⃗i,G = x⃗i,G + F ∗
(
x⃗r1,G − x⃗r2,G

)
+ F ∗

(
x⃗best,G − x⃗i,G

)
.

(9)U⃗j,i,G =

⎧
⎪⎨⎪⎩

v⃗j,i,G if (rand ≤ CR) or j = r3
else

x⃗j,i,G

.

Fig. 3   Block diagram of RBFNN based estimator
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Step 12 For each trial vector U⃗j,i,G,i = 1, 2, 3, ., ., .NP , evalu-
ate f

(
Ui,G

)
 , which is a mean square error (MSE). (Similar 

to step 3)
Step 13 Repeat the step14 for i = 1, 2, 3, ., ., .NP

Step 14 Finally, the next generation of NP number of 
target/population vector x⃗i,G+1 is selected based on sur-
vival of the fittest criteria as

Step 15 Obtain fmin

(
x⃗i,G+1

)
 and represent it as x⃗best,G+1 for 

the next generation.
Step 16 Stop

Pictorial representation of the DE algorithm is shown 
in Fig. 4.

2.2.3 � Particle swarm optimization based RBF neural 
network estimator

In this approach parameters of the RBFNN model i.e. {wi, ci, 
σi}, as described in Sect. 2.2.1, are updated using the PSO 
algorithm. The PSO [51–53] is a metaheuristics optimiza-
tion algorithm inspired by the paradigm of swarm intelli-
gence which mimics the social behavior of animals like fish 
and birds. It is successfully applied to various applications 
in engineering and science [54–56]. The algorithm uses a 
fixed number of particles that represent the parameters of 
RBFNN. Each particle updates its current velocity and posi-
tion by its own experience called personal best (p-best) 
and by the social experience of the swarm called global 
best (g-best). Steps involved in PSO are briefly described 
below:

Step 1 Initialize fix number of particles with random 
position and velocity uniformly distributed over the 
search space.
Step 2 Evaluate the fitness of each particle according to 
the objective function
Step 3 Record pbest for each particle and g-best of the 
swarm.
Step 4 Update velocity of each particle
Step 5 Update the position of each particle.
Step 6 Update pbest and gbest
Step 7 Repeat the steps from 2 to 6 until the termination 
condition is satisfied and stop.

Pictorial representation of the PSO algorithm is shown 
in Fig. 5.

(10)x⃗i,G+1 =

⎧
⎪⎨⎪⎩

U⃗i,G if f
�
U⃗i,G

�
≤ f

�
x⃗i,G

�
else

x⃗i,G

.

2.2.4 � Multi‑layer artificial neural network (MLANN)

MLANN, suggested by Haykin [57] is successfully employed 
in many applications to solve the regression problem. 
MLANN architecture considered for this proposed inves-
tigation consists of an N-5-1 structure. N represents the 
number of input features. Optimum results are obtained 
with 5 neurons in the intermittent hidden layer. Desired 
ET0 estimates are obtained at output neurons. Hyperbolic 
tangent (tanh) is used as an activation function in every 
processing neuron. The training of the network is done 
by a conventional back-propagation algorithm which is 
based on the error-correcting learning rule to update the 
weights and bias of each neuron in different layers.

2.3 � Empirical models

Weekly ET0 for the study locations is also computed using 
empirical methods of FAO56-PM, Blaney-Criddle, Open 
Pan, Turc, and Hargreaves from available meteorological 
data. A brief description regarding empirical approaches 
considered in this investigation and the corresponding 
input meteorological parameter requirement are listed 
in Table 2. The description regarding different climate 
based empirical methods considered in this investigation 
is not included in this paper. More details regarding these 
empirical approaches can be obtained from basic refer-
ences [1, 5–7].

2.4 � Performance evaluation measures

Comparative analysis of estimated ET0 obtained with dif-
ferent soft computing models and empirical methods 
considered for the investigation is carried out by com-
puting performance evaluation measures, namely, mean 
square percentage error (MAPE), root mean square error 
(RMSE), determination coefficient (R2) and efficiency factor 
(EF) proposed by Nash and Sutcliffe (NSE) [58]. The math-
ematical expression of different evaluation measures is as 
follows.

(11)MAPE =
1

n

n∑
i=1

||(Outobs − Outest)
||

Outobs
×100

(12)RMSE =

√√√√1

n

n∑
i=1

(Outest − Outobs)
2
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Fig. 4   Flowchart differential evolution algorithm
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where Outobs denotes the target and Outest denotes model 
estimated ET0 values. n is the number of testing patterns. 
Low MAPE and RMSE values represent the close agree-
ment between desired and estimated output. Similarly, 

(13)

R2 =

�∑n

i=1

�
Outobs − Outobs

��
Outest − Outest

��2

∑n

i=1

�
Outobs − Outobs

�2 ∑n

i=1

�
Outest − Outest

�2

(14)

EF = NSE = 1 −

∑n

i=1

�
Outest − Outobs

�2
∑n

i=1
(Outobs − Outobs)

2
(−∞ ≤ EF ≤ 1)

R2 and EF values close to 1 are also indicators of a higher 
accuracy level of the model.

3 � Results and discussion

The key objective of this investigation is to examine the 
potential of different evolutionary optimized hybrid 
(RBFDE, RBFPSO) and conventional (RBFNN, MLANN) soft 
computing approaches with available climatic features 
for estimation of ET0 comparable to FAO56-PM ET0. Input 
features combination of different models is decided based 
on empirical approaches of Hargreaves, Turc, Open Pan, 
Blaney-Criddle, and FAO56-PM ET0 listed in the previous 
section. These soft computing models are categorized 

Fig. 5   Flowchart particle swarm optimization algorithm

Table 2   Details of empirical 
models used to compute ET0

Empirical methods Input combination Empirical equation

Hargreaves [5] Tmax, Tmin ET0 = 0.0023 × Ra × Td × 0.5 ×
(
Tm + 17.8

)
Turc [6] Tmax, Tmin, BSS ET0 =

0.40×Tm(Rs+50)

(T+15)

Blaney-Criddle [7] Tmax, Tmin, RH1 & RH2, WS, BSS ET0 = a + b × p
(
0.46 × Tm + 8.13

)
Open Pan [7] WS, EP, RH1 & RH2 ET0 = kp × EP

FAO56-PM [1] Tmax, Tmin, RH1 & RH2, WS, BSS
ET0 =

0.408Δ(Rn−G)+�
900

T+273
u2(es−ea)

Δ+�(1+0.34u2)
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into type I to type V models. Like the Hargreaves method, 
type I models include only Tmax and Tmin as input features, 
whereas Type II soft computing models include BSS with 
temperature, which is equivalent to the Turc approach. 
In type III soft computing models, EP, RH1, RH2, and WS 
are considered as input features similar to that of the 
Open Pan empirical approach. Type IV models include 
six weather parameters (Tmax, Tmin, BSS, WS, and RH1 and 
RH2) equivalent to the Blaney-Criddle empirical approach. 
Another category of soft computing model termed Type V 
models are developed using Tmax, Tmin, BSS, and WS since 
these weather parameters exhibit positive correlations 
with ET0. The input feature EP, which is also positively cor-
related with ET0, is not included in type V soft computing 
models as obtaining EP data is very difficult. Input feature 
combinations used in different types of soft computing 
models and their equivalent empirical models are shown 
in Table 3. Weekly meteorological data of Raipur, Jagdal-
pur, and Ambikapur from 2001 to 2015 (80%) are used for 
model calibration or training, whereas the recent 4 years 
(20%) of the weekly meteorological data from 2016 to 
2019 are used for model validation. 

Soft computing models RBFDE, RBFPSO, RBFNN, and 
MLANN are coded in MATLAB as per the design and the 

learning algorithm described earlier. Simulation studies 
are carried out with a different input features combina-
tion to test the sensitivity of the soft computing approach 
to control parameters until a satisfactory accuracy level is 
achieved for estimation of FAO56-ET0 for different study 
locations. Detailed information regarding modeling strate-
gies and respective control parameters that produce opti-
mum results during the simulation process are shown in 
Table 4 for different soft computing models.

Calibration of RBFDE, RBFPSO, RBFNN, and MLANN 
models is done using the above-listed network parame-
ters with training datasets of all the three study locations, 
Raipur, Jagdalpur, and Ambikapur. During the training pro-
cess, input patterns are given to the model sequentially 
and the corresponding estimated output is obtained at the 
output layer after completion of the forward pass (Fig. 3). 
The estimated output is compared with the correspond-
ing target FAO56-ET0 output to compute the instantane-
ous error cost function. Real-time update of the model 
parameters is done in each instance to minimize the 
squared error using respective evolutionary (DE and PSO) 
and conventional back-propagation learning algorithms 
(RBFNN and MLANN). The process continues until all the 
available training input patterns for model calibration gets 

Table 3   Input feature 
combinations used in soft 
computing and empirical 
models

Type Soft computing models Equivalent 
empirical model

Input feature combinations

RBFDE RBFPSO RBFNN MLANN

I RBFDE1 RBFPSO1 RBFNN1 MLANN1 Hargreaves Tmax, Tmin

II RBFDE2 RBFPSO2 RBFNN2 MLANN2 Turc Tmax, Tmin, BSS
III RBFDE3 RBFPSO3 RBFNN3 MLANN3 Open Pan EP, RH1 & RH2, WS
IV RBFDE4 RBFPSO4 RBFNN4 MLANN4 Blaney-Criddle Tmax, Tmin, RH1 & RH2, WS, BSS
V RBFDE5 RBFPSO5 RBFNN5 MLANN5 – Tmax, Tmin, BSS, WS

Table 4   Parameters of the soft computing models used for simulation

Model parameters RBFDE RBFPSO RBFNN MLANN

Dimension of input features (D) 2, 3, 4 & 6 2,3,4 & 6 2, 3 4 & 6 2,3,4 & 6
Normalization of input features 0 to 1 0 to 1 0 to 1 − 1 to 1
Normalization method xk−xmin

xmin−xman

 , where xk represents kth instance

Initial values of the model parameters 0 to 1 0 to 1 0 to 1 − 1 to 1
Number of centers for RBF based models (c) 10 10 10 –
Number of neurons in intermediate layer – – – 5
Output neuron 1 1 1 1
Activation function Gaussian Gaussian Gaussian tanh
Learning algorithm DE PSO RBF update rules Back-propagation
Convergence coefficients/control parameters/ F = 0.9

CR = 0.9
Constriction coefficient
C1 = C2 = 1.49
Inertia weight w Linearly 

decreased from 0.9 to 0.4

�1 = �2 = �3 = 0.01 � = 0.01

Number of population/particles 5 × d 50 – –
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exhausted. This completes one cycle called an epoch. At 
the end of each epoch, the mean square error is com-
puted and stored for each epoch to examine the learn-
ing characteristic of soft computing models. The iterative 
process is repeated several times until MSE is minimized 
to a desired low value nearly close to zero. This completes 
the supervised learning process and model parameters are 
then fixed to constitute soft computing models. A simi-
lar calibration process is adopted for all soft computing 
approaches.

To test the performance of different soft computing 
models, test data patterns are then presented sequen-
tially at the input layer of the model and through forward 
pass respective estimated ET0 is obtained at the output 
layer for all the test patterns. These ET0 estimates are then 
compared with corresponding target FAO56-PM ET0 val-
ues. Performance evaluation measures, MAPE (%), RMSE 
(mm week−1), R2, and NSE as described in the previous 
section are then computed using desired and estimated 
output of different types of soft computing models and 
equivalent empirical approaches for comparison of model 
performance, which ultimately leads to model selection. 
The computed values of performance evaluation meas-
ures for different types of soft computing models and 

equivalent empirical approaches considered are listed in 
Tables 5 and 6 for all three locations. Comparative results 
of the analysis are discussed below:

	 i.	 For type I soft computing models, MAPE ranges from 
lowest of 7.4 for RBFDE1 and RBFDE2 (at Raipur) to 
highest of 11.8 for MLANN1 (at Jagdalpur), whereas 
MAPE obtained with Hargreaves model is compara-
tively very high and ranges between 22.6 (at Raipur) 
to 30.3 (at Ambikapur).

	 ii.	 Type II soft computing models produce improved 
ET0 estimates with low MAPE compared to type I 
models. For type II models, MAPE ranges from the 
lowest of 4.9 with RBFDE2 (at Raipur) to a high of 
10.2 with MLANN2 (at Raipur). MAPE is again quite 
higher with the equivalent empirical approach of 
Turc, which is obtained between 10.1 (at Jagdalpur) 
to 13.9 (at Raipur).

	 iii.	 Subsequently, for type III models, MAPE values are 
computed close to that of type II models, which 
varied between a lowest of 4.7 with RBFDE3 & 
RBFPSO3 (at Raipur) to a high of 8.0 with MLANN3 
(at Jagdalpur). MAPE for the Open Pan approach var-
ies between 12.2 (at Raipur) to 22.2 (at Ambikapur), 

Table 5   MAPE (%) and RMSE 
(mm week−1) for different 
types of soft computing 
and equivalent empirical 
models with test data sets of 
Ambikapur, Jagdalpur, and 
Raipur

*boldface numbers highlight the best results

Type MODEL Ambikapur Jagdalpur Raipur

MAPE RMSE MAPE RMSE MAPE RMSE

I RBFDE1 8.9* 2.96 10.6 3.63 7.4 2.98
RBFPSO1 9.3 3.04 10.7 3.67 7.4 2.98
RBFNN1 9.3 3.06 10.5 3.79 8.5 3.22
MLANN1 10.0 3.11 11.8 3.88 9.0 3.23
Hargreaves 30.3 7.15 29.0 7.53 22.6 6.13

II RBFDE2 4.9 2.10 5.3 2.74 5.7 2.63
RBFPSO2 5.0 2.10 5.4 2.78 5.9 2.68
RBFNN2 4.9 2.23 5.2 2.81 5.9 3.14
MLANN2 5.1 2.31 6.2 2.93 10.2 3.45
Turc 13.9 3.73 10.1 4.26 13.9 6.54

III RBFDE3 5.9 1.82 7.0 2.18 4.7 1.75
RBFPSO3 6.0 1.89 6.9 2.21 4.7 1.77
RBFNN3 6.3 1.95 7.0 2.27 4.9 1.80
MLANN3 7.8 2.43 8.0 2.48 6.6 2.28
Open-Pan 22.2 6.55 21.7 6.30 16.2 5.05

IV RBFDE4 2.1 0.68 3.7 1.06 1.1 0.36
RBFPSO4 3.4 1.02 3.8 1.10 1.3 0.43
RBFNN4 4.4 1.32 4.1 1.22 2.4 0.82
MLANN4 4.6 1.36 4.4 1.25 3.9 1.29
Blaney-Criddle 22.1 6.12 15.5 4.27 22.6 7.20

V RBFDE5 2.2 0.66 3.4 1.06 1.9 0.80
RBFPSO5 3.9 1.08 3.6 1.08 2.2 0.87
RBFNN5 4.6 1.38 4.7 1.39 2.9 1.07
MLANN5 5.2 1.48 5.2 1.46 4.1 1.31
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which is very high as compared to type III soft com-
puting models.

	 iv.	 Type IV soft computing models yield better results as 
compared to all other types of soft computing and 
empirical models. MAPE ranges between a low of 
1.1 to a high of 3.9 at Raipur, followed by 3.7 to 4.4 at 
Jagdalpur and 2.2 to 4.6 at Ambikapur with RBFDE4 
and MLANN4 respectively. MAPE with the Blaney-
Criddle method is again quite inferior as compared 
to type IV soft computing approaches and ranges 
from 15.5 (at Jagdalpur) to 22.6 (at Raipur).

	 v.	 Type V models also produced good results, as 
reasonably fair estimates of ET0 can be obtained 
between a low MAPE of 1.9 with RBFDE5 (at Raipur) 
to 5.2 with MLANN5 (at Jagdalpur and Ambikapur), 
which is very much comparable to that of type IV 
models, even without taking humidity data as one 
of the input features.

	 vi.	 Regarding RMSE, type I soft computing models 
have resulted in RMSE between 2.98 mm week−1 (at 
Raipur) with RBFDE1 and RBFPSO1 to 3.88 week−1 
(at Jagdalpur) with MLANN1, as against the higher 

RMSE of 6.13 week−1 (at Raipur) to 7.53 mm week−1 
(at Jagdalpur) obtained with Hargreaves approaches.

	 vii.	 Type II soft computing models have produced 
improved RMSE as compared to type I models, which 
ranges between a low of 2.10  mm  week−1 with 
RBFDE2 (at Ambikapur) to a high of 3.45 mm week−1 
with MLANN2 (at Raipur). Interestingly, at Jagdalpur 
the soft computing models produce comparatively 
better estimates of FAO56-PM ET0 in terms of RMSE 
as compared with similar models at Jagdalpur and 
Raipur. In general, type II soft computing models 
have yielded better ET0 estimates as compared to 
Turc methods, for which RMSE ranges between 3.73 
(at Ambikapur) to 6.54 mm week−1 (at Raipur).

	viii.	 Regarding type III models, RMSE has improved 
further and is computed between a low of 
1.75  mm  week−1 with RBFDE3 to a high of 
2.28 mm week−1 with MLANN3 at Raipur, whereas 
the same for Jagdalpur and Ambikapur, it varied 
between a low of 1.82 mm week−1 with RBFDE3 to a 
high of 2.48 mm week−1 with MLANN3. The equiva-
lent empirical method of Open Pan has produced 
higher RMSE, which varied between 5.05 mm week−1 

Table 6   R2 and NSE for 
different types of soft 
computing and equivalent 
empirical models with test 
datasets of Ambikapur, 
Jagdalpur, and Raipur

*boldface numbers highlight the best results

Type MODEL Ambikapur Jagdalpur Raipur

R2 NSE R2 NSE R2 NSE

I RBFDE1 0.949 0.892* 0.878 0.785 0.955 0.932
RBFPSO1 0.950 0.886 0.880 0.781 0.954 0.933
RBFNN1 0.950 0.884 0.876 0.766 0.948 0.922
MLANN1 0.938 0.881 0.871 0.755 0.946 0.921
Hargreaves 0.933 0.371 0.809 0.077 0.900 0.716

II RBFDE2 0.981 0.946 0.955 0.950 0.969 0.948
RBFPSO2 0.980 0.945 0.954 0.948 0.969 0.946
RBFNN2 0.978 0.939 0.950 0.947 0.946 0.926
MLANN2 0.976 0.934 0.948 0.939 0.929 0.910
Turc 0.905 0.829 0.795 0.704 0.833 0.677

III RBFDE3 0.960 0.959 0.934 0.922 0.978 0.977
RBFPSO3 0.956 0.956 0.930 0.920 0.977 0.976
RBFNN3 0.954 0.953 0.931 0.916 0.977 0.976
MLANN3 0.928 0.927 0.908 0.900 0.961 0.961
Open-Pan 0.743 0.472 0.827 0.353 0.947 0.808

IV RBFDE4 0.995 0.994 0.988 0.982 0.999 0.999
RBFPSO4 0.989 0.987 0.986 0.980 0.999 0.999
RBFNN4 0.982 0.978 0.985 0.976 0.996 0.995
MLANN4 0.982 0.977 0.983 0.975 0.990 0.988
Blaney-Criddle 0.826 0.538 0.827 0.703 0.821 0.608

V RBFDE5 0.995 0.995 0.983 0.982 0.996 0.995
RBFPSO5 0.986 0.986 0.983 0.981 0.995 0.994
RBFNN5 0.980 0.976 0.973 0.969 0.993 0.991
MLANN5 0.974 0.973 0.974 0.965 0.988 0.987
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in Raipur to 6.55 mm week−1 at Ambikapur, which is 
almost three times more as compared to type III soft 
computing models.

	 ix.	 Similar to MAPE, type IV soft computing models 
have yielded excellent results in terms of RMSE 
also. In Raipur, RMSE ranges between the lowest 
of 0.36 mm week−1 with RBFDE4 to the highest of 
1.29  mm  week−1 with MLANN4. At Jagdalpur, it 
ranges between 1.06 mm week−1 with RBFDE4 to 
1.25 mm week−1 with MLANN4, whereas at Ambi-
kapur, RMSE ranges between 0.68 mm week−1 with 
RBFDE4 to 1.36 mm week−1 with MLANN4. The low 
RMSE values (< 1 mm week−1) obtained with evo-

lutionary optimized hybrid soft computing models 
(RBFDE4 and RBFDE5) are quite encouraging. This 
demonstrates the potential of the RBFDE4 and 
RBFPSO4 models and these models may consider as 
an alternative to the FAO56-PM empirical approach 
for ET0 estimation in the study area. In contrast, 
Blaney-Criddle has produced very high RMSE, which 
ranges between 4.27 to 7.29 mm/week at different 
locations, similar to that of the Open Pan method.

	 x.	 Type V, soft computing models have also produced 
better results which is quite identical with type IV 
models even without including humidity data as 
an input feature. RMSE with type V models ranges 

Fig. 6   Relationship between estimated ET0 and FAO56-PM ET0 for different soft computing and empirical models with test data sets at 
Ambikapur
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between lowest 0.66  mm  week−1 with RBFDE5 
to highest of 1.48  mm  week−1 with MLANN5 at 
Ambikapur. At Raipur and Jagdalpur, RMSE ranges 
between 0.80 to 1.31 and 1.06 to 1.46 mm week−1 
with RBFDE5 and MLANN5 models respectively.

		    To further examine the relationship between the 
estimated and FAO56-PM ET0, two more statistical 
measures, R2 and NSE are computed for different 
soft computing and empirical models and shown in 
Table 6. The linear relationship between estimated 
ET0 and FAO56-ET0 is also depicted in Figs. 6, 7, and 
8 in Ambikapur, Jagdalpur, and Raipur respectively. 
In general, both R2 and NSE convey similar informa-
tion about the model performance and therefore, 

the marginal difference is observed between these 
two performance evaluation measures within a sim-
ilar type of model in different locations. However, 
sometimes R2 values give a false indication and pro-
duce higher values close to 1 despite a very high 
intercept. In such cases corresponding NSE helps in 
evaluating the model performance.  

	 xi.	 Type IV soft computing models have produced 
better R2 and NSE values as compared to all other 
models considered for investigation. The highest 
R2 values of 0.999, 0.988, and 0.995 are obtained 
with RBFDE4 and RBFPSO4 in Raipur, Jagdalpur, 
and Ambikapur respectively with test data sets. The 
remaining type IV soft computing models also pro-

Fig. 7   Relationship between estimated ET0 and FAO56-PM ET0 for different soft computing and empirical models with test data sets at Jag-
dalpur
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duced good R2 and NSE values as compared to the 
equivalent empirical approach.

	 xii.	 Similar results are obtained with type V soft comput-
ing models, as R2 and the corresponding NSE vary 
between 0.965 to 0.996 in different locations, with 
RBFDE5 and RBFPSO5 being the best models.

	xiii.	 For the type III model, R2 and NSE range between 
0.961 to 0.978 at Raipur and between 0.900 to 0.960 
at Jagdalpur and Ambikapur. R2 and NSE with type II 
soft computing models vary between 0.910 to 0.981. 
Hence, it can be stated that consistent ET0 estimates 
with a fair degree of agreement between estimated 

and target ET0 can be obtained using Type both II 
and III soft computing models.

	xiv.	 Type I soft computing models of RBFDE1 and 
RBFPSO1 have resulted in slightly lower R2 and NSE 
values than RBFNN1 and MLANN1 as compared to 
remaining types mainly as fewer input features are 
involved in computations.

	 xv.	 Inconsistence and low R2 and NSE values that have 
obtained with empirical approaches of Hargreaves, 
Turc, Open Pan, and Blaney Criddle as compared to 
their equivalent soft computing models of respec-
tive types, clearly establish the fact that soft comput-

Fig. 8   Relationship between estimated ET0 and FAO56-PM ET0 for different soft computing and empirical models with test data sets at 
Raipur
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ing models produce better estimates of FAO56-PM 
ET0 than empirical models.

Results of the performance evaluation analysis indi-
cate that the evolutionary optimized hybrid soft com-
puting models considered for the investigation (RBFDE 
and RBFPSO) performed consistently better than other 
conventional soft computing techniques (RBFNN and 
MLANN) and empirical approaches in all the objectives. 
From the inferences, it is also evident that when a com-
plete set of the climatic variable is involved in the com-
putation of ET0 using these models, it looks very difficult 
to choose between RBFDE and RBFPSO as they look sta-
tistically similar in some cases. However, the proposed 
RBFDE is recommended because of its preciseness and 
generalization performance in estimating ET0 in all the 
stations considered for the study.

4 � Conclusions ET0

The present investigation is carried out to examine the 
generalized potential of evolutionary optimized hybrid 
soft computing techniques RBFDE and RBFPSO for the esti-
mation of ET0 in different ACZs. The ET0 estimates obtained 
with proposed RBFDE and RBFPSO models are compared 
to the conventional neural network (RBFNN, MLANN) and 
existing empirical approaches. Looking to the scarcity of 
complete datasets required for computation of FAO-PM ET0, 
four variants of each category of soft computing models 
(RBFDE, RBFPSO, RBFNN, and MLANN) equivalent (in terms 
of input feature combination) to empirical approaches (Har-
greaves, Turc, Open Pan and Blaney-Criddle) is examined. 
It can be concluded that different soft computing models 
considered in this investigation, have resulted in improved 
and more consistent FAO56-PM ET0 estimates as compared 
to equivalent empirical approaches. Among the soft com-
puting models, evolutionary models RBFDE and RBFPSO 
produced a more precise estimation of FAO56-PM ET0 than 
conventional RBFNN and MLANN as proposed RBFDE and 
RBFPSO models resulted in low MAPE and RMSE and high 
R2 and NSE close to 1 in most of the cases. However, ET0 
estimates obtained with the proposed RBFDE seems to be 
slightly better than RBFPSO. Hence, appropriate soft com-
puting models may be recommended for the estimation of 
ET0 in other stations of respective ACZs of the study area. 
The proposed soft computing models may be embedded in 
crop weather simulation models as subroutines for precise 
estimation ET0 with available input features. However, re-
calibration and re-validation of these data-driven models 
are essentially required for their effective implantation in 
other parts of the world.
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a b s t r a c t

The ongoing COVID-19 pandemic has caused global health impacts, and governments
have restricted movements to a certain extent. Such restrictions have led to disruptions
in economic activities. In this paper, the GDP figures for the April–June quarter of
2020 for eight countries, namely, the United States, Mexico, Germany, Italy, Spain,
France, India, and Japan, are forecasted. Considering that artificial neural network models
have higher forecasting accuracy than statistical methods, a multilayer artificial neural
network model is developed in this paper. This model splits the dataset into two parts:
the first with 80% of the observations and the second with 20%. The model then uses the
first part to optimize the forecasting accuracy and then applies the optimized parameters
to the second part of the dataset to assess the model performance. A forecasting error
of less than 2% is achieved by the model during the testing procedure. The forecasted
GDP figures show that the April–June quarter of the current year experienced sharp
declines in GDP for all countries. Moreover, the annualized GDP growth is expected to
reach double-digit negative growth rates. Such alarming prospects require urgent rescue
actions by governments.

© 2020 Economic Society of Australia, Queensland. Published by Elsevier B.V. All rights
reserved.

1. Introduction

The novel coronavirus disease 2019 (COVID-19), which first appeared in Wuhan city, China, in December 2019, has
caused global distress, claiming lives and collapsing economies, as many individuals are connected globally (Acemoglu
et al., 2020; Nakamura and Managi, 2020). Given its deepening threat to human lives and economies, the Director-General
of the World Health Organization (WHO) declared COVID-19 a Public Health Emergency of International Concern (WHO,
2020) on 30th January 2020. Policymakers in every country are under pressure to maintain a balance between containing
the disease by implementing lockdowns and saving the jobs and livelihoods of a large number of people by keeping
economic activities undeterred (Yoo and Managi, 2020). Restrictions on the movements of both people and goods have
disrupted supply chains and accelerated the unemployment problem. Given this consideration, it has become important
for countries to assess the broad economic implications of COVID-19. Macroeconomic indicators represent the health and
stability of a country’s economy. Gross domestic product (GDP), the most widely recognized indicator, accounts for the
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overall goods and services produced within a country. Accurate GDP projections can equip policymakers with tools to
effectively plan for future economic development. In this paper, we develop a multilayer neural network model that can
forecast GDP with minimum error.

Previous methodologies employed in GDP forecasting can be classified into two broad categories. The first emphasizes a
strong theoretical background and applies linear models (Guégan and Rakotomarolahy, 2010). However, concerns with this
approach have been raised due to strong hypotheses on model specification, estimation, and asymptotic properties of the
estimated parameters (Guégan and Rakotomarolahy, 2010). The second, nonlinear models, includes the nearest-neighbors
method and neural network (Härdle et al., 2012; Tkacz, 2001a; Kock and Teräsvirta, 2014). The nearest-neighbors method
uses parametric models and neural networks for nonparametric modeling. Forecasting GDP using a linear autoregressive
model based on the Box–Jenkins approach or multivariate VAR (Box et al., 2015; Bańbura et al., 2010; Balcilar et al., 2015)
is common. Additionally, artificial neural networks (ANNs) have been applied to forecast macroeconomic indicators such
as inflation, exchange rates, oil prices, and interest rates (Hlaváček et al., 2005; Jena et al., 2015; Ali Choudhary and
Haider, 2012; McNelis, 2005; Ramos-Pérez et al., 2019; Szafranek, 2019). Furthermore, ANN models have been used to
forecast GDP in different countries, such as the United States (Loermann and Maas, 2019), China (Shi et al., 2006), Sweden
(Teräsvirta, 2005), Romania (Saman, 2011), and Canada (Tkacz, 2001b). Recently, Torres and Qiu (2018) employed the ANN
method to forecast returns from several cryptocurrencies, exchange rates, commodities, and stocks.

Several studies have demonstrated that ANN models yield more accurate predictions than econometric models (Tkacz,
2001a,b; Ali Choudhary and Haider, 2012; McNelis and McAdam, 2004). Shi et al. (2006) used a neural network with
a genetic algorithm to forecast China’s GDP. The quarterly data employed in the model yielded accurate and efficient
estimates. Jahn (2020) demonstrated that an ANN model yielded better performance than a linear model in predicting the
annual GDP of 15 industrialized economies. Furthermore, Chuku et al. (2019) estimated the GDP for South Africa, Kenya,
and Nigeria and found that an ANN model was superior to traditional econometric models and ARIMA. With increased
exposure to chaotic influences (political factors, external factors, and commodity prices) among different countries, linear
models are becoming less suitable; ANN models are more accurate given their flexibility in modeling (Chuku et al., 2019).

Uncertainty is common in macroeconomic activity, which is a challenge for researchers keen on predicting the future
of such indicators in a constantly changing environment. During the current pandemic period, concerns have been raised
about a future global economic crisis. The International Monetary Fund (IMF) projects a 4.9% decline in global economic
growth for 2020–21: an 8% decline for advanced economies, and 3% and 1% declines for emerging and low-income
economies, respectively (International Monetary Fund, 2020). Similar estimates from the OECD indicated a 0.5 to 1.5%
decline in global economic growth, while the World Bank and Asian Development Bank predicted 2.1% to 3.9% and 2.3%
to 4.8% declines in global economic growth, respectively (RBI, 2020a,b). The increased spread of the pandemic has led
many researchers to estimate the economic consequences of the pandemic outbreak. The studies employing annual data
are not well suited for this purpose, as they focus on long-term forecasting, whereas policy measures must be devised in
the short term. Although a pandemic outbreak usually has both long- and short-term consequences, short-term analysis
is more effective from a policymaking perspective. Quantifying the short-term consequences will lead to better decision
making to overcome the tragedies associated with the pandemic.

Against this backdrop, we developed a multilayer ANN model to accurately predict quarterly GDP figures for 8 major
economies: the United States, Mexico, Germany, Italy, Spain, France, India, and Japan. These countries represent three
continents and have experienced a massive onslaught of COVID-19 spread. The main contribution of this paper to the
forecasting literature is that it provides a well-calibrated nonlinear model that can accurately predict the impact of
a pandemic such as COVID-19. The adaptive model is suitable for analyzing the economic impact of COVID-19. Such
predictive models will provide policymakers with a framework to readjust and reinvigorate their economies and can be
used for predictions in other countries, as well as the global GDP.

The advantages of the ANN model (Sivanandam and Deepa, 2013) are as follows:
(1) Adaptation potential: The model can learn a pattern or predict a value by adjusting the weights of connections

between neurons of different layers.
(2) Self organization: The model organizes itself during the training phase to subsequently perform the desired task.
(3) Real-time operation: After a satisfactory training phase, the model can provide fast prediction and classification

performance because of the parallel operations of the artificial neurons of all layers.
(4) Fault tolerance: Because of the massively interconnected parallel network, the ANN performs satisfactorily even

after a small amount of damage to the network.
The rest of this paper is organized as follows: Section 2 develops the ANN forecasting model; the simulation procedure

of the model is explained in Section 3; the simulation results are presented in Section 4; a discussion of the results is
provided in Section 5; finally, the last section concludes with broad policy messages.

2. Development of the Multilayer Artificial Neural Network (MLANN)-based GDP prediction model

Statistical models are inappropriate for prediction when the data are highly nonlinear, uncorrelated, nonstationary,
and chaotic, (Teräsvirta, 2006). Nonlinear models such as ANNs are required to circumvent this situation. The MLANN is a
multilayered, fully connected, continuously differentiable, nonlinear network that is an appropriate choice to handle the
nonlinearity in data (Haykin, 2009). The steps used in the development of the MLANN-based GDP prediction model are
shown in Fig. 1.
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Fig. 1. Steps followed in the development of the GDP prediction model.

Fig. 2. An MLANN-based GDP prediction model.

The detailed architecture of the MLANN-based prediction model is shown in Fig. 2. Let I, J and K be indices for the
input, hidden and output layers, respectively. I represents the number of inputs in each input pattern, J denotes the
number of neurons in the hidden layer, and K represents the number of neurons in the output layer. In this case, since
the output is one, K = 1. Let there be N input patterns: the ith input pattern is represented as xi. Every input pattern
is applied to the input layer of the MLANN model sequentially, weighted, summed, and passed through the activation
function (tanh) to give the output at the hidden layer. The same process continues for the next layer, and the final output
of the feedforward network is obtained as ok. The output is then compared with the desired value or target value, dk, to
calculate the error. This error value is used along with backpropagation (Haykin, 2009) learning to update the weight and
bias values of the network. The process continues until the squared error is minimized. The ANN is an adaptive model
that iteratively learns from past data during its development stage. Iterative learning means that the connecting weight
of each branch updates its old value during the training phase so that the overall training error progressively decreases as
the number of iterations increases. The weights are adjusted from their initial random values following a weight update
rule known as the back propagation (BP) algorithm. The weight update rules of the BP algorithm are given in Eqs. (6)
to (11). The initial weights are chosen randomly; then, the weights of each path of the network are updated using the
old weight values, inputs to the weights, back propagated error and learning coefficient. The update process continues
until the optimal weights are obtained. The detailed equations for the calculation of the output at each layer and weight
update rules are given below.

Referring to the above figure, the output of the kth output neuron ok is given as

ok = tanh(fk) (1)

where

fk =

J∑
j=1

ojwkj + wbk (2)

oj = output at the jth hidden neuron

wkj = weights between the jth hidden neuron and kth output neuron

wbk = bias at the kth output neuron
Similarly, the output at the jth hidden layer, oj, is calculated as

oj = tanh(fj) (3)
where
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fj =

I∑
i=1

xiwji + wbj (4)

xi = ith input pattern
wji = weights between ith input and jth hidden neuron
wbj = bias at jth hidden neuron

The output of the prediction model ok is compared with the corresponding target value dk to determine the error. Hence,

ek = dk − ok (5)

The weights between the hidden layer and output layer, wkj, are updated using

wkj = wkj + µ ∗ δk ∗ oj (6)

where

δk = ek ×
(1 − o2k)

2
(7)

µ = learning parameter lies between 0 to 1
The bias weight, whose input is always one, is updated as

wbk = wbk + µ ∗ δk (8)

Similarly, the weights between the input layer and the hidden layer, wji, are updated using

wji = wji + µ ∗ δj ∗ xi (9)

where

δj = δk ∗ wkj ∗
(1 − o2j )

2
(10)

The bias weight of the jth neuron in the hidden layer is updated as

wbj = wbj + µ ∗ δj (11)

Eqs. (1)–(11) are the key equations for developing the MLANN-based GDP prediction model.

3. Simulation procedure

The simulation of the MLANN-based GDP prediction model is conducted referring to Fig. 2 and using MATLAB 2016
software. The steps are explained in the following section.

(i) Data collection and normalization: Quarterly GDP data were collected for Japan, China, Germany, Spain, France, Italy,
the USA, and Mexico from https://fred.stlouisfed.org, Economic Research Division, Federal Reserve Bank of St. Louis (FRED
| St. Louis Fed, 2020). For India, the data were collected from the Reserve Bank of India (RBI, 2020a,b). The time period of
the data and details about the data are provided in Table 1. The GDP data are normalized to a range of 0–1 by dividing
each observation by the maximum value of the distribution. Large differences between observations in the data cause
problems during modeling calibration, and normalized data help overcome this problem during the calibration of the
model and increase the convergence speed.

(ii) Feature extraction: Normalization of the data is followed by feature extraction using a sliding window of size three
to generate data patterns or feature patterns. The window is moved over the entire data with a shift of one, and each
time, a group of three values is obtained. If N is the length of the data, then there are N − 2 groups. For the nth group,
x(n), x(n + 1), x(n + 2) are the available values. Every data or input pattern consists of five values, i.e., three values of
the group and the slopes between the 1st and 3rd values and 2nd and 3rd values. Mathematically, these values can be
represented as: {x(n), x(n + 1), x(n + 2), (x(n + 2) − x(n + 1))/x(n + 2), (x(n + 2) − x(n))/x(n + 2)}. Hence, at each time
point, five inputs are fed to the MLANN model in one input pattern, and there are N − 2 patterns in total. Since MLANN
is a supervised learning-based model, the target value is also known and stored. For the nth input data pattern, x(n + 3)
is the required desired value or target value. The total number of patterns generated for each of the datasets is given in
Table 1. Of the total data patterns or input patterns generated, 80% are used to train the model, and the remaining 20%
are used to test the model.

(iii) Training of the model: The development of an MLANN-based GDP prediction model is formulated as an optimization
problem, where the error between the target value and model estimated values is minimized towards zero. Once the
error is nearly zero, the model can predict the correct value of the GDP. A 9:3:1 MLANN structure is used in this paper to
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Table 1
Details of the data.
Sl. no. Name of

country
Length of
time-series

Length of
data

Total number
of patterns
extracted

Total no. of
training
patterns

Total number
of testing
patterns

1 USA 01/01/1990 to
01/10/2020

121 119 97 22

2 Mexico 01/01/1993 to
01/01/2020

109 107 86 21

3 Italy 01/01/1995 to
01/01/2020

101 99 79 20

4 Germany 01/01/1991 to
01/01/2020

117 115 92 23

5 Spain 01/01/1995 to
01/01/2020

101 99 79 20

6 France 01/01/1990 to
01/01/2020

121 119 95 24

7 Japan 01/01/1994 to
01/01/2020

105 103 82 21

8 India 01/04/2011 to
31/03/2020

36 34 28 06

predict GDP. The model has two hidden layers with 9 and 3 neurons and an output layer with one neuron. Initially, all the
connecting weights and bias values are randomly selected between −0.5 and 0.5. The choice of initial values affects the
convergence speed and the final mean square error after the training phase. To make the training process unbiased, the
initial weights are randomly selected. The final weights after the training process may have positive or negative values;
therefore, the initial weights are chosen to be both negative and positive values. Further, to achieve unbiased selection,
the weights are chosen from a uniform distribution with zero mean (unbiased) ranging between −0.5 and 0.5. The total
numbers of weights required between the input layer and first hidden layer, first hidden layer and second hidden layer,
and second hidden layer and output layer are 5 × 9, 9 × 3, and 3 × 1, respectively. Similarly, the numbers of biases are
9, 3, and 1 for the first hidden, second hidden, and output layers, respectively. The first data pattern with five values is
fed to the model, and the input is weighted and passed through an activation function to produce an output at the first
hidden layer. The same process is repeated for the second hidden layer and finally the output layer. The output is then
compared with the corresponding target value to calculate the error. The BP rule is used to update the weights and bias
values using Eqs. (6)–(11). In the same way, all input patterns are fed to the model sequentially, and the weights are
updated until all input patterns are exhausted. This process completes one experiment and is repeated 50,000 times in
10 independent runs. The value of the learning parameter is 0.1. During every experiment, the mean squared error (MSE)
is calculated and plotted to illustrate the convergence characteristics of the model. The error convergence plots during
training are shown in Figs. 4(a)–(h), and a comparison of the actual and predicted values of the model during training is
shown in Figs. 3(a)–(h). Once the error is minimized, the training process is stopped, and the final values of the weights
and biases are saved for testing purposes.

(iv) Testing or validation of the model: Testing or validation of the model is performed using the 20% of the input or
data patterns that are not used during training. The testing patterns are input into the trained model sequentially, and
the output is obtained after weighting, adding, and passing through the activation function. Each of the outputs of the
model is compared with the available target value to calculate the mean absolute percentage error (MAPE) using (12)

MAPE =
1
L

L∑
l=1

abs((a(l) − p(l))/a(l) × 100 (12)

where a(l) = actual value of the lth testing pattern
p(l) = predicted value of the lth testing pattern

4. Simulation results

Figs. 3(a) to 3(h) present a comparison of the actual data and the forecasted estimates in the training process. The
model has been trained accurately to capture the spikes present in the data.

Figs. 4(a) to 4(h) show the MSE of the estimated GDP outputs obtained from the training of the model. The figures
show that the MSE curve starts with a high value but declines with each iteration and finally becomes parallel to the
X-axis, showing that it has reached its minimum. Additional iterations do not further reduce the MSE, and the weights
obtained from the model are optimum.
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Fig. 3. Comparison of Actual and Predicted GDP during Training of the Model.
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Fig. 3. (continued).
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Fig. 3. (continued).

Table 2 below shows the MAPE of the predicted GDP values during testing of the MLANN model for the 8 countries.
The MAPE is an indicator of how close the predicted values are to the actual values. In all countries, the MAPE is 2% or
less, which suggests that the ANN model developed to predict future values is well calibrated. The last column of Table 2
presents the forecasted GDP figures for the 8 countries considered in this study.

A comparison of the actual and predicted values of quarterly GDP for the countries during the testing of the model is
provided in Appendices A and B.

5. Discussion of the results

Table 3 presents the quarter-to-quarter growth rate for Q1 (January–March) and Q2 (April–June) for the 8 major
economies. The Q1 growth rate is estimated using actual data, whereas the Q2 growth rate is based on the percentage
change between the forecasted GDP figure of Q2 and the actual figure for Q1. Furthermore, the annual growth rate for
all countries is given in the last column of Table 3. The quarter-to-quarter and annual growth rates are based on the
following formula:

Quarter GDP Growth (Gq) =
GDPq − GDPq−1

GDPq−1
(13)

GDP Annual (Ga) = (1 + Gq)4 − 1 (14)

331



P.R. Jena, R. Majhi, R. Kalli et al. Economic Analysis and Policy 69 (2021) 324–339

Fig. 4. MSE of Predicted GDP during Training of the Model.
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Fig. 4. (continued).
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Fig. 4. (continued).

Table 2
Mean absolute percentage error (MAPE) of GDP prediction during testing.
Country MAPE during

testing
Forecasted GDP value
for April–June quarter
(in local currency)

India 1.2503 33026
US 1.4458 18454
Germany 1.9925 724250
Japan 2.0429 533590
Italy 0.4479 373980
Spain 1.5360 274840
Mexico 1.9523 4450
France 1.5953 522350

Note: The forecasted GDPs of seven countries are represented in their respective currency — India in
billion Rupee, United States in billion dollars, Germany, Spain, France and Italy in million Euro, Japan in
billion Yen, Mexico in billion pesos.

The extreme severity of COVID-19 has prompted several governments to take necessary precautions based on the

spread of infections. These measures include localized recommendations, national recommendations, and regional and
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Table 3
Quarterly growth rates during COVID-19 shutdown.
Country Quarterly growth

(Jan–Mar, 2020)
based on actual data

Quarterly growth
(Apr–Jun, 2020) based
on forecasted figure

Annual growth
rate

United States −1.29 −2.74 −10.53
Mexico −1.60 −2.14 −8.30
France −5.34 −1.78 −6.95
Spain −5.24 −2.72 −10.45
Italy −5.31 −2.40 −9.26
Germany −2.22 −1.04 −4.11
Japan −0.49 −2.42 −9.35
India 2.38 −2.78 −10.67

Note: Quarterly growth rate represents present quarter to previous quarter growth. Annual growth rate indicates
the growth estimated at an annual rate, including all four quarters.

national lockdowns. As the disease containment measures became increasingly stringent by mid-March 2020, the
disruption of supply chains and slowing of economic activities became drastic. However, a significant decline in worldwide
economic growth was already noted even before COVID-19, mainly due to the trade war between China and the United
States and the steep decline in consumer expenditure (World Economic Outlook Update, 2019).

Table 3 shows that most economies shrank in the 1st quarter of 2020. The United States, the largest economy in
the world, experienced a 1.3% decline in GDP growth in the January to April quarter when compared to the previous
quarter. The US economy initiated regional restrictions on movement based on the severity of the pandemic in mid-March.
However, the first quarter captured only 2 weeks of the lockdown, and the impact loomed large in the second quarter
due to increased pandemic outbreaks and restrictions in different states of the country. Mexico experienced a situation
similar to that of the US, where restrictions were initiated in mid-March and GDP growth fell by 1.6% in the first quarter
of 2020.

While North American countries restricted movements to a certain extent to curb the spread of the disease, European
countries, such as Italy, Spain, Germany, and France — the four largest Euro economies that had the highest number of
infections — imposed a stricter form of lockdown. The strict lockdown measures caused economic contractions of 5.34%,
5.24%, and 5.31% in France, Spain, and Italy, respectively, in the first quarter of 2020. The largest economy of the Eurozone,
Germany, experienced a 2.2% GDP contraction during the same time. Although flattening of the pandemic outbreak curve
was achieved in European countries by the end of June, the second quarter of 2020 may entail a steep decline in GDP due
to the complete shutdown of economic activities.

The greatest impact is observed in countries such as France and Spain, which have a strong dependence on tourism
and the service industry compared to Germany. Asian countries showed modest growth from January to March. India’s
GDP grew at 2.38% in this quarter compared to the previous quarter. India imposed a nationwide lockdown on the 25th of
March 2020. Hence, the January to March growth rate does not reflect the impact of the lockdown; rather, it reflects the
already slowing economy even before the outbreak of COVID-19. Surprisingly, air pollution, as a byproduct of economic
activity, has decreased during this period (Kumar and Managi, 2020). The Japanese economy contracted by 0.5% from
January to March compared to the previous quarter, the second straight decline in economic growth for two consecutive
quarters. Reduced exports amid a trade war between the US and China, followed by a slump in consumer expenditure,
have had a severe impact on the Japanese economy.

The devastating spread of the pandemic and extension of restrictions among several countries has resulted in a steep
decline in economic growth and led to recession (IMF, 2020). The decline in aggregate demand caused increased layoffs,
leading to higher unemployment. The key policies by the central banks of different countries to lower the impact and
induce liquidity are evident. The world economy was on the cliff, with significant events such as geopolitical tensions and
trade wars, and the coronavirus pushed the economy over the edge (World Bank, 2020; United Nations, 2020).

We forecast the GDP growth for the 2nd quarter of 2020 because of the policy implications. The forecasted GDP for the
April to June quarter and the annualized GDP growth indicate a steep decline among the major economies of the world.
The forecasted GDP growth rates in the United States and Mexico are −2.74% and −2.4%, respectively, for the 2nd quarter.
The restrictions in these countries have disrupted the movement of several essential and nonessential goods. However,
what is more concerning is the double-digit decline in annualized GDP growth, which stands at −10.53% and −8.3% in
the US and Mexico, respectively. The decreased demand for petroleum products at home and export goods abroad might
have caused such a substantial negative impact on the US economy. Furthermore, increased unemployment and severe
disruption of service sector-related industries, such as hotels and airlines, may lead to a sharp decline in economic growth
and personal consumption.

The disruption in the Eurozone is expected take quite a long time to recover, as most of the member countries are
heavily dependent on tourism and services. The major economies of the Eurozone – France, Spain, Italy, and Germany
– are predicted to contract by 1.78, 2.72, 2.4. and 1.04%, respectively. The unemployment stimulus package in the Euro
area is smaller than that in the United States due to the widespread use of short-term work policies (World Bank, 2020).
Among Asian countries, Japan prevented the spread of the pandemic by means of national recommendations. Although the
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Table 4
Comparison of GDP annual growth forecasts by our model and other leading global agencies.
Country Our model IMF World Bank Morgan Stanley

United States −10.53 −8 −7.9 −5.8
Mexico −8.30 −10.5 −8.7

France −6.95 −12.5

−10.1 −9.6Spain −10.45 −12.8
Germany −4.11 −7.8
Italy −9.26 −12.8

Japan −9.35 −5.8 −6.8
India −10.67 −4.5 −9 −1.7

Note: The GDP growth rates estimated by various financial agencies were taken from different reports for
comparison purposes.

Japanese economy was opened for trade, a strong contraction in GDP is observed in the second quarter, which follows the
decline experienced from October to December 2019. The spillover effect of the trade war and decline in global aggregate
demand may continue, which would further hinder the growth of the Japanese economy. While predicting Japan’s GDP in
the training dataset (see Fig. 3f), a significant gap was observed between the actual and predicted values for some of the
previous quarters. One explanation of this gap is that the predictive accuracy of a model is affected when an economy faces
frequent uncertain events. This is what occurred for the Japanese economy, as it has been faced with several uncertain
policy decisions resulting from an unsustainable fiscal trajectory, constraints on monetary policy, uncertainty around
world trade policies, and weak growth (Arbatli et al., 2019). A difference between the actual and predicted values of GDP
is also observed for Italy (see Fig. 3e). This prediction error may be explained by the prolonged period of policy uncertainty
in both countries.

In India, a nationwide lockdown was initiated in the last week of March and was continued in the subsequent months
of the next quarter with localized lockdown and nationwide recommendations. The forecasted growth rate of GDP in India
is negative, i.e., −2.78%, and the annualized growth rate for 2020–21 is predicted to be −10.67%. Towards the end of the
April–June quarter, the pandemic was raging through rural areas of the country as the migrant reverse exodus occurred,
in which millions of migrant workers returned to their native rural homes from the cities. At the time of writing this
paper, the pandemic had affected 1.7 million lives in India, and several states were in and out of lockdown. Therefore, a
significant contraction in GDP growth in India, as forecasted by us, is not surprising. While the fiscal stimulus provided
by different central banks would reduce the contraction in the 2nd quarter, the overall economic outlook in most of the
countries in 2020 looks bleak.

In Table 4, the forecasts from the ANN model are compared with the forecasts from leading global agencies to enhance
the understanding of the world economic outlook in 2020. Morgan Stanley’s outlook for 2020 is optimistic, with a V-
shaped recovery, and their forecasts show a modest decline in GDP for the 8 countries we considered. Their optimism
is based on the slender recovery in economic activities observed in May. The projections by the World Bank and IMF
are closer to our forecasts. The forecasted decline in GDP growth for all these countries warrants a strong response from
governments to prevent economies from slipping into recession.

Although past economic shocks have contracted the world economy, the global financial crisis of 2008 was the greatest
slump since the great depression in 1930. Low-interest rate policies, overleveraging, and unsustainable fiscal and monetary
policies led to a global financial crisis, causing a credit crunch and unemployment, which pushed world economies into
a deep recession. World GDP growth slowed from 5% in 2007 to 3.75% in 2008 and 2% in 2009. However, with remedial
measures, such as quantitative easing, financial reforms by the governments and central banks, signs of recovery were
evident in 2010. Other past pandemic outbreaks had negative effects on economies, but they were limited to a few
countries. The 1918 Spanish influenza had a significant impact on major economies. The projected reduction in quarterly
GDP was 2.6% for the United States (Dixon et al., 2010), and strong evidence of a negative effect on capital returns was
found in Sweden (Karlsson et al., 2014). The short-term impact of Ebola on most African economies was negative, as GDP
growth fell by 2.1% in Guinea, 3.4% in Liberia, and 3.3% in Sierra Leone (World Bank, 2014). The specific countries facing
pandemics in the past had a small impact on the world economy, while the COVID-19 pandemic has had a widespread
negative impact on global economic growth and trade. The ongoing trade war and uncertain worldwide events, followed
by the pandemic outbreak, have led to an unprecedented economic crisis. This uncertain nature of the economic impact
of the pandemic has resulted in a gap between the actual and forecasted quarterly GDP growth during the COVID-19
shutdown period. The quarter-to-quarter fluctuations in GDP are the reason for the forecasting error during the shutdown
period. The current model, which has accurately predicted the GDP during the training period, needs improvement to
capture the large fluctuations.

6. Conclusion

The main contribution of this paper is the development of an ANN model to forecast GDP one quarter ahead for eight
major economies. This model captures the nonlinearities present in the quarterly time-series data and provides accurate
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Table A.1
Actual and predicted value obtained during testing pattern.
United States Germany Japan Italy

1 2 1 2 1 2 1 2

1.714 1.713 6.880 6.843 5.293 5.180 3.885 3.873
1.728 1.720 6.939 6.869 5.317 5.262 3.894 3.896
1.741 1.732 6.925 6.927 5.329 5.284 3.913 3.905
1.746 1.743 6.968 6.902 5.316 5.279 3.926 3.928
1.747 1.747 7.000 6.938 5.353 5.270 3.934 3.941
1.756 1.747 7.030 6.967 5.344 5.288 3.955 3.945
1.764 1.755 7.086 6.987 5.353 5.289 3.967 3.971
1.774 1.762 7.127 7.031 5.369 5.288 3.990 3.983
1.782 1.770 7.142 7.058 5.407 5.298 4.004 4.008
1.793 1.777 7.167 7.060 5.432 5.318 4.019 4.022
1.802 1.784 7.253 7.075 5.491 5.331 4.041 4.035
1.816 1.791 7.293 7.139 5.510 5.355 4.041 4.057
1.832 1.801 7.356 7.160 5.475 5.366 4.041 4.051
1.844 1.812 7.410 7.191 5.490 5.348 4.037 4.047
1.860 1.819 7.420 7.218 5.455 5.350 4.044 4.043
1.873 1.829 7.448 7.215 5.463 5.339 4.052 4.051
1.878 1.836 7.441 7.227 5.525 5.338 4.055 4.062
1.893 1.838 7.456 7.220 5.559 5.367 4.056 4.063
1.902 1.846 7.491 7.227 5.581 5.384 4.047 4.062
1.912 1.850 7.473 7.247 5.495 5.390 3.832 4.049
1.922 1.854 7.493 7.233 5.469 5.357
1.898 1.859

Note: The table includes the total number of testing pattern and obtained (1) Actual values and (2) Predicted Values for
different countries.

predictions. These countries have experienced substantial negative health impacts from the ongoing COVID-19 pandemic.
The infection and fatality rates have been alarming, and governments have implemented various forms of lockdown to
contain the disease. As a result, their economies have been disrupted, resulting in the shutting down of many industries
and rising unemployment rates. In such a situation, a clear picture of what lays ahead in terms of economic outlook will
help policymakers take necessary steps. For example, opinion has been divided in the US Congress as to how much relief
is sufficient to restart the economy. The ANN model developed in our paper accurately predicted the GDP figures, as the
MAPE is less than 2% in each of the country cases.

The findings show that the April to June quarters of 2020 will see a significant decline in economic growth in all
eight countries. The annualized GDP growth shows an even larger impact, as most countries will experience double-digit
negative economic growth. Such a scenario is expected, though it requires strong corrective actions by central banks
and governments. The US government has announced a rescue package of $2.2 trillion (The Hindu, 2020), which is the
largest rescue package in recent decades. Joseph Stiglitz, the Nobel laureate in Economic Sciences, in an interview with
the British tabloid The Independent has opined that an even larger rescue package to the tune of $6 trillion (a third of the
US GDP) may be required. Similarly, the Indian government declared a $260 billion coronavirus rescue package (The New
York Times, 2020). This rescue package is supposed to support small- and medium-scale industries and the agriculture
sector, reinstate migrant laborers, and support ailing banks and financial institutions. Furthermore, most central banks
have injected liquidity into the economy by reducing interest rates.
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Table B.1
Actual and predicted value obtained during testing pattern.
France Mexico Spain

1 2 1 2 1 2

5.184 5.175 4.265 4.261 2.667 2.663
5.208 5.178 4.309 4.268 2.691 2.689
5.215 5.201 4.362 4.313 2.717 2.708
5.242 5.205 4.361 4.350 2.736 2.729
5.239 5.227 4.387 4.336 2.747 2.742
5.256 5.221 4.407 4.370 2.771 2.746
5.262 5.235 4.455 4.377 2.784 2.768
5.300 5.239 4.506 4.415 2.805 2.776
5.287 5.271 4.527 4.441 2.834 2.791
5.299 5.256 4.542 4.449 2.849 2.814
5.329 5.264 4.528 4.459 2.869 2.821
5.374 5.290 4.581 4.448 2.883 2.832
5.411 5.323 4.642 4.488 2.899 2.840
5.450 5.346 4.630 4.509 2.913 2.848
5.495 5.368 4.645 4.494 2.930 2.856
5.504 5.393 4.648 4.511 2.946 2.864
5.515 5.394 4.642 4.508 2.957 2.872
5.534 5.398 4.637 4.506 2.969 2.877
5.569 5.408 4.633 4.505 2.982 2.882
5.598 5.427 4.627 4.503 2.825 2.887
5.612 5.440 4.553 4.500
5.624 5.445
5.619 5.449
5.318 5.445

Note: The table includes the total number of testing pattern and obtained (1) Actual values and (2) Predicted Values
for different countries.
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Abstract
In this paper, the teaching–learning-based optimization-based functional link artificial neural network (FLANN) has been 
proposed for the real-time identification of Maglev system. This proposed approach has been compared with some of the 
other state-of-the-art approaches, such as multilayer perceptron–backpropagation, FLANN least mean square, FLANN par-
ticle swarm optimization and FLANN black widow optimization. Further, the real-time Maglev system and the identified 
model are controlled by the Fuzzy PID controller in a closed loop system with proper choice of the controller parameters. 
The efficacy of the identified model is investigated by comparing the response of both the real-time and identified Fuzzy 
PID-controlled Maglev system. To validate the dominance of the proposed model, three nonparametric statistical tests, i.e., 
the sign test, Wilcoxon signed-rank test and Friedman test, are also performed.

Keywords  System identification · Maglev system · FLANN · TLBO · Fuzzy PID

1  Introduction

In the recent past, many articles have been published on the 
identification of a complex system, owing to its widespread 
use in various areas. System identification means the esti-
mation of the parameters of a plant or matching the output 

responses of the model with that of the physical system. Sys-
tem identification is intended to find the deep understanding 
of the cause–effect relationships [1–4]. The nature of the 
system is categorized by different characteristics, such as its 
electrical, physical and chemical properties. However, it is 
very difficult to understand and model such characteristics 
of the plant. Thus, identification is a big challenge in several 
fields like control engineering [5, 6], power system engineer-
ing [7], renewable [8], etc. Accurate and quick identification 
is a difficult task for real-world plants which is mainly due 
to its nonlinear and dynamic nature. Many researchers have 
applied various forms of the artificial neural network (ANN) 
like multilayer perceptron (MLP) [9], functional link artifi-
cial neural network (FLANN) [10, 11], radial basis function 
(RBF) [12, 13], etc., for the identification purpose. By using 
multilayer perceptron (MLP) networks, Narendra and Par-
thasarathy have reported various identification techniques for 
a low complexity dynamic system [14]. However, the MLP 
network has multiple layers, which make it computationally 
expensive for the identification of any complex system. The 
FLANN model which is introduced by Pao et al. [15] is a 
single layer neural network without any hidden layer. The 
FLANN input is functionally expanded with different expan-
sion techniques like power series, trigonometric, Chebyshev 
expansion, etc. This model is having lower computational 
complexity with a fast rate of convergence. The FLANN has 
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been used for pattern classification [16], prediction [17] and 
many other challenging tasks with faster convergence and 
lesser complexity compared to the MLP.

In the training phase of an ANN, all the weights are iter-
atively updated, and they reached the optimal value. The 
methods for updating the weights of a neural network could 
be based on the derivative or free from the derivative. Some 
of the examples of the derivative/gradient based are least 
mean squares (LMS) [6], backpropagation (BP) [2], recur-
sive least squares (RLS) [18], etc. Similarly, examples of 
the second category include bio-inspired or evolutionary 
computing or computational intelligence-based approach. 
In most of the applications, the gradient-based approach 
provides inferior solutions due to the inherent limitations, 
such as trapping at local optimum points and incapability of 
finding derivatives of the discontinuous function.

To eliminate the above shortcomings, derivative-free 
algorithms, such as the genetic algorithm (GA) [19], par-
ticle swarm optimization (PSO) [20–22], and black widow 
optimization (BWO) [23], have been applied by different 
researchers to train the model. Kumar et al. [24] have intro-
duced a metaheuristic-based socio-evolution and learning 
optimization algorithm (SELO) inspired by the social learn-
ing behavior of humans. The performance of the SELO is 
evaluated using 50 benchmark problems and compared with 
the other competitive algorithms. The results show the per-
formance of the SELO is better than the others. Gholiza-
deh et al. [25] have introduced a metaheuristic algorithm, 
i.e., improved fireworks algorithm (IFWA) used for a dis-
crete structural optimizations problems of steel trusses and 
frames. The optimization results demonstrate that the IFWA 
has highly competitive and superior over the standard FWA 
algorithm in terms of the convergence rate and statistical 
analysis. Gholizadeh et al. [26] have proposed a metaheuris-
tic algorithm, center of mass optimization (CMO) to deal 
with performance-based discrete topology optimization 
(PBDTO) problem. PBDTO process is implemented for 
four multi-story steel braced frames by CMO. The authors 
have concluded that the CMO-based PBDTO formulation 
is an efficient technique for the seismic discrete topology 
optimization. Gholizadeh et al. [27] have proposed a new 
and efficient metaheuristic algorithm Newton metaheuristic 
algorithm (NMA) for optimization of steel moment frames. 
The NMA is a population-based framework which uses 
Newton gradient-based method. Here, the authors investi-
gate the effectiveness of the proposed algorithm by consider-
ing two benchmark discrete trusses optimization problems. 
The performance of the proposed algorithm is analyzed on 
the basis of statistical parametric and nonparametric test 
and found to be superior over other competitive algorithms. 
Hayyolalam et al. [23] have proposed a novel black widow 
optimization algorithm (BWO), which is inspired by mating 
behavior of black widow spiders. The efficacy of the BWO 

algorithm is determined by taking 51 different benchmark 
functions. From obtained results, it is confirmed that the 
BWO has better performance and superiority as compared 
to other algorithms. All these optimization techniques may 
be implemented to update the weights of the neural network 
and applied for identification of any system.

However, selecting the proper controlling parameters of 
these derivative-free bio-inspired algorithms is still a chal-
lenging task because of the presence of many controlling 
parameters. Due to these controlling parameters, the weight 
updation of neural network model is complex, computation-
ally expensive and time consuming. Hence, there is a need 
to explore other bio-inspired algorithms with less number of 
controlling parameters. Rao et al. [28] recently came up with 
the TLBO optimization technique to circumvent the above 
shortcomings, which uses the teaching and learning meth-
odology of the teacher and the student in a classroom. They 
highlighted the merits of TLBO that it does not depend on 
any controlling parameters, and only need the algorithm spe-
cific parameters, such as number of populations, iterations 
and stopping criteria. They have stressed on the fact that 
the TLBO eliminates the intricacy of the optimum selection 
and optimization of controlling parameters, which is usually 
necessary in other bio-inspired techniques. Naik et al. [29] 
have concluded that the performance of higher order neural 
networks is sensitive to weight initialization and relies on a 
kind of adopted learning algorithm. They have implemented 
TLBO for the training of ANN’s, and applied it successfully 
for the classification problem. In this manuscript, we have 
implemented TLBO for optimizing weights of a variant of 
ANN, i.e., FLANN for identification of Maglev plant.

In this paper, MLP-BP, FLANN-LMS, FLANN-PSO, 
FLANN-TLBO and FLANN-BWO have been implemented 
for the identification of the Maglev system. The compara-
tive analysis of performance among all these approaches is 
carried out by considering the mean squares error and the 
computational time. Here, a Fuzzy PID controller is also 
implemented to control the identified model, and then, the 
response is compared with that of the Fuzzy PID-controlled 
actual Maglev system.

The organization of the paper is as follows: Introduction 
and the recent work on identification are presented in Sect. 1. 
Section 2 presented and illustrated the construction and prin-
ciple of the Maglev plant as shown in Fig. 1. Discussion of 
related work is presented in Sect. 3, and Sect. 4 highlighted 
the prerequisites of the research work. Section 5 deals with 
the proposed TLBO-based FLANN model for identification 
of the Maglev plant. In Sect. 6, design of controller based on 
the Fuzzy PID is discussed. In Sect. 7, the simulation study, 
validation and nonparametric statistical test of proposed 
model and the results of top-notch models are presented and 
compared. Section 8 presents the contribution of the manu-
script, and the scope of future research work is outlined.
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2 � The Magnetic Levitation Plant

The laboratory setup of the Maglev system from Feedback 
Instruments Ltd., Model No. 33-210 is shown in Fig. 2, and 
it has a wide range of applications like magnetically balanced 
bearings, vibration damping and transportation systems (i.e., 
very popularly known as Maglev trains) [30–33]. Basically, it 
works on the Maglev principle and has two parts: (i) the Mag-
lev plant, and (ii) the digital computer where the controlling 
action takes place. The Maglev system comprises of different 
integrated components, like the electromagnet, ferromagnetic 
ball, IR sensor and a current driver circuit. A digital computer 
provides an immense platform for the effective design of vari-
ous controllers, which can be implemented using MATLAB 
and Simulink for real-time applications. The whole setup accu-
mulates both mechanical and electrical units with I/O interface 
systems.

The Maglev plant parameters are given in Table 1, and its 
transfer function is as follows [34–36]:

(1)Gp(s) =
ΔVo

ΔVi

=
−3518.85

s2 − 2180

where Gp(s) represents the Maglev plant (Feedback 
Instruments Ltd., Model No. 33-210) transfer function, Vo 
is the output voltage of the sensor and Vi is the input voltage 
to the controller. From Eq. (1) and Fig. 3, it is found that 
the behavior of the Maglev system is highly nonlinear and 
unstable in nature. Therefore, it is challenging task to get the 
improved identified model of the Maglev plant.

3 � Related Work

Artificial neural network (ANN) plays an important role in 
the identification of a nonlinear system [37, 38]. The neural 
network (NN) can performed nonlinear mapping between 
the input and output, as it has interconnection between the 
different layers. The neural network can be classified on 
the basis of its input, hidden and output layers. From the 
structural point of view, an ANN may be a single layer or 
multilayers. In a multilayer perceptron (MLP), there may be 
one or many hidden layers in between the input and output 
layers [39]. However, in a single layer structure, no hidden 
layer is present. Each neuron is connected from one layer to 
next layer of other neuron.

The learning of any neural network is a process where 
the weights are updated iteratively. These learning 
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Fig. 1   Schematic diagram of the Maglev system

Fig. 2   The Maglev laboratory setup

Table 1   The physical parameters of the Maglev system

Name of the parameter Symbol Value

Mass of steel ball m 0.02 kg
Control voltage to current gain 

(constant)
k1 1.05 A/V

Sensor gain (constant), offset k2, � 143.48 V/m,  − 2.8 V
Input voltage to the controller Vi + 5 V and − 5 V
Output voltage of sensor Vo  + 1.25 V to − 3.75 V
Equilibrium position of steel ball x0 0.009 m
Current at equilibrium position i0 0.8 A
Gravitational constant g 9.81m∕s2

Fig. 3   Nonlinear response of Maglev system
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processes may be of derivative based or derivative free. 
Some of the standard conventional gradient derivative-
based approaches are LMS, RLS and BP algorithms. 
These have been applied by different researchers to train 
various neural networks and other adaptive models. Simi-
larly, different derivative-free/evolutionary/bio-inspired 
learning algorithms, such as the GA, PSO, ant colony 
optimization (ACO), cat swarm optimization (CSO) and 
TLBO algorithms, are also used to train different neural 
network models.

Derivative-based algorithms are usually based on 
the gradient descent search algorithm and mathemati-
cally derived by utilizing the derivative of error. Least 
mean squares (LMS) are a stochastic gradient method 
or a simple derivative-based algorithm [40]. It is very 
popular, and widely used for its simple structure and ease 
of implementation to minimize the error. It is suitable 
for single layer ANN models for updating the weights. 
Backpropagation (BP) algorithm is derivative-based algo-
rithm, which is suitable for multilayer ANN models [41]. 
The gradient-based optimization techniques fail to solve 
optimizing functions having discontinuities. These tech-
niques may get trapped at local optimum points while 
solving functions having multiple optimal (maxima/
minima) points. To overcome these bottlenecks of the 
traditional derivative-based approaches, different heuris-
tic algorithms have been implemented by researches. The 
PSO, which is based on the principle of the movement 
of a flock of birds that collectively search for food is 
a heuristic algorithm that has better convergence char-
acteristics even for non-convex and discontinuous func-
tions [20, 42]. This algorithm has a better exploration 
capability as the best among the swarm is followed by all 
the individuals along with their own best positions. The 
algorithm has provision for both local and global search 
techniques. The teaching–learning-based optimization 
(TLBO) has no control parameters. It undergoes a two 
phase search; the teacher phase performs a global search 
for better exploration, while the learner phase carries out 
for local search for better exploitation [43–45]. Also, this 
algorithm being dependent only on algorithm specific 
parameters, and without having controlling parameters 
is expected to have a better convergence characteristic is 
discussed in details in Sect. 4. The black widow optimi-
zation is a type of evolutionary-based optimization tech-
nique that imitates the strange mating behavior of the 
black widow spiders [23]. It is one of the latest techniques 
in the evolutionary-based optimization family. It delivers 
fast convergence speed, and avoids local optima problem. 
These techniques update the weights in three stages, i.e., 
procreate, cannibalism (sexual cannibalism and sibling 
cannibalism) and mutation.

4 � Prerequisites

In this paper, a MLP and a special variant of ANN, i.e., 
FLANN is implemented for the identification of the Maglev 
system. FLANN is a type of single layer NN in which, the 
input data is allowed to pass through a functional expansion 
block, and hence, the input is functionally expanded with 
different expansion techniques. The power series expansion, 
trigonometric expansion and Chebyshev expansion are some 
of the mostly used expansion techniques. The Chebyshev 
functional expansion is found to be better for many engineer-
ing applications, and hence, it is considered for the expan-
sion of FLANN inputs for the identification of Maglev sys-
tem in this article. The Chebyshev expansion of input xl , can 
be written as [41, 46, 47],

The higher order polynomials are expanded as per usual 
practice. The output of the functional expansion block is 
multiplied with a set of weights. The basic structure of 
FLANN model that is trained by any adaptive algorithm is 
depicted in Fig. 4.

The lower computational complexity of the FLANN 
model due to its simple single layer structure, and sim-
ple learning algorithms, makes it computationally cheap 
and time efficient [48, 49]. The FLANN model holds the 
advantage of a single layer perceptron (SLP) network and 
an MLP network by evading their shortcomings. Here, the 
adaptive algorithm is the PSO and hence named the model 
as FLANN-PSO model. A set of input signals is given to the 
FLANN-PSO model, and the input of the FLANN model 
is functionally expanded nonlinearly by using the Cheby-
shev functional expansion technique. All the weights have 
been updated by using the PSO algorithm. Simultaneously, 

(2)

T0(xl) = 1 for l = 0

T1(xl) = xl for l = 1

T2(xl) = 2x2
l
− 1 for l = 2

Tl+1(xl) = 2xlTl(xl) − Tl−1(xl) for l > 2

Fig. 4   Structure of the FLANN Model
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a set of weights are initialized in between 0 and 1, and it is 
multiplied with the input signals. The output of each set of 
weights is compared with the same corresponding desired 
(output) signal and each set of weights is considered to be 
one particle. Hence, each set will produce one error signal.

The set of weights whose error is the minimum is consid-
ered to be the global particle. The other particles, i.e., other 
sets of weights, are local particles, and they update their 
velocity and position according to Eqs. (3) and (4):

where Vi(d) and Xi(d) represents the velocity and posi-
tion of the i th particle, respectively, and rand represents the 
random number, which is in between [0,1]. Pg(d) and Pi(d) 
are the position of g-best and p-best, respectively. w is the 
weighting factor, c1 and c2 are the constant whose values 
determine the effect of social and cognitive components.

Once all the particles/set of weights are updated, again the 
error (i.e., objective function) will be calculated by using the 
new sets of weights. According to the minimum error, the 
respective weights will be saved so that it can be compared 
with the previous minimum error. If the current error is 
lesser than the previous one, then the current value is saved 
or the previous one. This process is repeated iteratively for 
a predefined number of times. After a certain epoch, the 
change of error is saturated, and then, the program is termi-
nated. Finally, the optimum weight is reported. The FLANN 
network having this optimum weight is called as the trained 
network, and suitable for testing in the test data.

(3)

Vi(d) = wVi(d) + c1 ∗ rand ∗ (Pi(d) − Xi(d))

+ c2 ∗ rand ∗ (Pg(d) − Xi(d))

(4)Xi(d + 1) = Xi(d) + Vi(d + 1)

5 � Proposed TLBO‑Based FLANN Model

This article presents the metaheuristic TLBO technique 
based on the teaching and learning methodology, which 
helps to update the weights of FLANN [29]. The TLBO 
algorithm simulates a classroom like environment where 
the number of students is the population whose level of 
knowledge is considered as the possible solution set of the 
problem. Hence, the knowledge is defined by its objective 
function in the problem. The students in a classroom learn 
mainly through two processes; one through the teacher, and 
other by interacting between themselves. Thus, TLBO has 
two phases (a) the teacher phase and (b) the learner phase. 
In the ‘teacher phase,’ the learner group learns from the 
teacher, and in the ‘learner phase’ they learn by having dis-
cussions with one another. The most knowledgeable person 
in the classroom is considered as the teacher who shares his 
or her knowledge with the learners, and at every iteration, 
the best learner is considered as a teacher. Different designed 
variables of the optimization problem are analogous to the 
different subjects offered to the students (learners). The 
results (grade) of each learner are equivalent to the fitness 
of the problem. The teacher tries to enhance the knowledge 
of all the learners in accordance with his or her capability. 
The transfer of knowledge also depends on the capability of 
the students (learners).

A set of input signals having window size ‘u,’ i.e., {
x1,x2,x3,....., xu

}
, is given to the proposed FLANN-TLBO 

model and again, and the input of the FLANN model is 
functionally expanded nonlinearly by using the Chebyshev 
functional expansion technique. Simultaneously, random 
sets of weights (equals to number of expanded inputs of 

Fig. 5   Proposed FLANN model 
for identification of Maglev 
system
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the FLANN) are initialized between 0 and 1. Each set is 
multiplied by the expanded input signals. Then, the output 
of the FLANN is compared with the desired signal. Hence, 
it results a set of error signal 

{
e1,e2,e3,....., eu

}
.

Maglev plant input can be expanded by using Chebyshev 
expansion by the following mathematical form [46],

(5)Ti(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

∶

∶

Tk

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

x1

2x2
2
− 1

∶

∶

2xkTk(xk) − Tk−1xk

⎤
⎥⎥⎥⎥⎥⎥⎦

For k>2

Here, xm is the input, 
∧
y

m+u is the output of the FLANN 
model, Ti(n) is the expanded input using Chebyshev 
expansion and wi(n) is the weight vector having Q no. of 
elements. Equation (6) shows the output of the proposed 
model as shown in Fig. 5. The weights set connected with 
the FLANN model is optimized by the TLBO algorithm to 
achieve desired response and the error is

(6)
∧
y

m+u =

Q−1∑
i=1

Ti(n)wi(n)

(7)em+u = ym+u −
∧
y

m+u

Fig. 6   Flowchart of FLANN-
TLBO network

Load input-output data of Maglev System

If previous error < Present error ?

START

Initialize the random sets of 90 weights, number of iteration: 30 
and activation function (tanh) of FLANN-TLBO model

STOP

Is termination criterion satisfied ?

Functionally expand the ten inputs using chebyshev expansion

Assigned the random set of weight and activation function to find 
the error

Store best weight according to minimum error

Generate or update the new sets of weights and again evaluate 
the error

Accept previous 
weight

Accept recent 
weight

Report optimum sets of weights of FLANN-TLBO model

Yes

YesNo

No
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 Here, the total input (m) = 1, 2, …., n-u, input window 
size of FLANN (u) = 10 and n is the no. of expanded input. 5.1 � Teaching phase

A teacher tries to enhance the performance of all the stu-
dents in the class. Considering a class of n students (popula-
tion size), m subjects (number of design variables) the mean 

Fig. 7   Model of Fuzzy PID 
controller

Table 2   Basic rule table for FIS

Row represents the error (e) and column represents 
the derivative of e

NB NS Z PS PB

NB NVB NB NM NS Z
NS NB NM NS Z PS
Z NM NS Z PS PM
PS NS Z PS PM PB
PB Z PS PM PB PVB

Table 3   Linguistic variables 
of FIS POSITIVE VERY BIG PVB

POSITIVE BIG PB
POSITIVE MEDIUM PM
POSITIVE SMALL PS
ZERO Z
NEGATIVE SMALL NS
NEGATIVE MEDIUM NM
NEGATIVE BIG NB
NEGATIVE VERY BIG NVB

 Fig. 8   Membership function of 
input variable
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result of students in subject j can be denoted as Mji for the 
ith iteration. Let the overall best result of all the subjects of 
the whole population obtained for the learner number be 
denoted by kbest . The teacher is the most knowledgeable 
person having the highest fitness value in the class. So, the 
teacher tries to improve the results of the students, for this a 
correction variable derived from the difference between the 

mean results of the kth student and the teacher in subject j 
is defined as

where DM correspond to the difference of mean,Wj,kbest,i 
is the result of the teacher in j th subject, rd is a random 
number between 0 and 1. Tf is called as the teaching factor 
whose value is either 1 or 2. The teaching factor is defined 
randomly as

The solutions are updated as

where Wnew
j,k,i

 is the updated result value of the kth student 
in the jth subject at the i th iteration and Wj,k,i is the existing 
result. However, the updated result will be accepted if it 
satisfies the boundary condition, else it has to be replaced 
by the limiting boundary value. Also, it should have a better 
fitness than that of the existing values; otherwise, it need not 
be replaced. This updated value will act as input to the 
learner phase (Fig. 5).

5.2 � Learner phase

The individual learner enhanced his or her own knowledge 
by interacting with his/her classmates apart from learning 
from the teacher. It is a convention that a learner will learn 
from another learner if the other learner’s knowledge is more 
than his or her. In this phase, two copies p and q are selected 
randomly such that x′

totalpi
≠ x

′

totalqi
 , i.e., the total results as 

updated in the teacher phase do not match. Then, their 
results are updated as:

(8)DMj,k,i = rd × (Wj,kbest,i − Tf × Mji)

(9)Tf = round[1 + rd(0, 1) ∗ (2 − 1)]

(10)Wnew
j,k,i

= Wj,k,i + DMj,k,i

(11)x
��

jpi
= x

�

jpi
+ ri(x

�

jpi
− x

�

jqi
); if x

�

totalpi
< x

�

totalqi

 Fig. 9   Membership function for 
output variable

 Fig. 10   Identified model response with FLANN-BWO

 Fig. 11   MSE plot of FLANN-BWO
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where x′′

jpi
 is accepted if its fitness value is better than that of 

x
′

jpi
 ; further, x′′

jpi
 should satisfy the boundary condition. If the 

boundary condition is not satisfied, it should be replaced by 
x
′

jpi
.
The 1st set of updated weights and error values is stored 

for the forthcoming assessment. Again, the TLBO is applied 
to update the next set of weights and matched with the pre-
vious value of weights. The best set of weights, i.e., the 
set of weight having minimum error is considered to be the 
teacher, and the other sets are learners. The parameter of the 
proposed model undergoes the teaching and learning phase 
of TLBO to update the weights of the FLANN network. 
This process has been repeated until the error is less than the 
threshold value. The flowchart describes the detailed process 
of the TLBO-based FLANN model as shown in Fig. 6.

6 � Design of the Fuzzy PID Controller

The universally accepted PID controller is an important 
tool for industrial control and automation, due to its reli-
ability and adaptability [50]. It has the capability to handle 

(12)x
��

jpi
= x

�

jpi
+ ri(x

�

jqi
− x

�

jpi
); if x

�

totalpi
> x

�

totalqi

 Fig. 12   Identified model response with FLANN-TLBO

 Fig. 13   MSE plot of FLANN-TLBO

 Fig. 14   Identified model response with FLANN-PSO

 Fig. 15   MSE plot of FLANN-PSO

 Fig. 16   Identified model response with FLANN-LMS

 Fig. 17   MSE plot of FLANN-LMS
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all the shortcomings of any other controller, and is found 
to be suitable for many of the industrial requirements. 
However, due to the high nonlinearity and uncertainty 
present in different systems, the performance of the PID 
gets degraded. To avoid these bottlenecks and enhance 
the capability of the PID controller, a fuzzy technique has 
been incorporated with the PID controller by researchers 
[51].

The control law associated with PID is as follows:

where kp is the proportional gain, ki is the integral gain, 
kd is the derivative gains, e(t) is the error signal and u(t) is 
the control input.

The intervening system is fuzzified  with two inputs, 
i.e., the system error (e) and derivative of error (ė) , 
obtained from coefficients, Kin1 and Kin2 as shown in Fig. 7. 
These two values match the values between − 1 and 1. 
This leads to assign the membership function in a definite 
manner using the rule Table 2 and the linguistic variable 
Table 3.

For each input, five membership functions are chosen 
and assigned. However, for the output, nine triangular 
membership functions have been defined from − 1 to 1 as 
shown in Figs. 8 and 9, and found from the coefficient 
Kout .

This Fuzzy PID controller has been utilized for validat-
ing our identified model. This controller has been imple-
mented to the identified model, and in the real-time Mag-
lev plant. The responses of the identified model and the 
actual model are compared to investigate the performance 
of the proposed.

7 � Simulation Study

The algorithms were executed in the Acer Aspire V system, 
Window 10 OS, Intel® Core™ i5-3337U CPU @ 1.80 GHz 
processor, RAM of 8 GB and in a MATLAB environment. 
Five different neural network models, i.e., the MLP trained 
by BP, and FLANN networks trained by the LMS, PSO, 

(13)u(t) = kpe(t) + ki ∫ e(t)dt + kd

de(t)

dt

TLBO and BWO algorithms have been implemented for the 
comparative analysis.

7.1 � Performance Analysis

All the possible functional expansions are implemented, and 
we found that the Chebyshev functional expansion model is 
found to be the most effective in our application. Hence, in 
our study, we have utilized the Chebyshev expansion in all 
the four FLANN models for reasonable comparison. The 
error signal which is the difference between the desired sig-
nal and the output of the FLANN network is considered to 
be the cost function. The following parameter have been 
considered for the identification of Maglev system using dif-
ferent algorithms.

Table 4   Comparative results 
of identified model of Maglev 
system

Model No. of iteration Average MSE CPU time (in s) Big O Notation

FLANN-BWO 100 2.28E−07 382.422 O(Ni * (Ps * Fe) * Nt)
FLANN-TLBO 30 2.7498E−08 462.02 O(Ni * (Ps * Fe) * Nt)
FLANN-PSO 20 1.3945E−08 782.43 O(Ni * (Ps * Fe)*Nt)
FLANN-LMS 10 2.47E−07 4.15 O( Ni * Nt)
MLP-BP 20 1.1470E−07 8.96 O(Ni * Nt)

Table 5   Comparative results of MSE of various optimization tech-
niques for 20 independent test runs

Sl. no. MSE

BWO TLBO PSO LMS MLP-BP

1 1.99E−07 6.14E−08 1.20E−07 2.71E−07 1.81E−07
2 2.59E−07 1.16E−08 5.83E−08 2.29E−07 1.12E−07
3 2.72E−07 7.93E−09 1.34E−07 2.23E−07 1.50E−08
4 2.25E−07 8.69E−09 4.04E−08 2.85E−07 1.43E−07
5 2.90E−07 2.01E−08 1.46E−07 2.64E−07 2.16E−07
6 2.28E-07 2.82E-08 1.56E-07 2.36E-07 2.56E-07
7 2.67E-07 2.47E-08 1.04E-07 3.02E-07 2.12E-07
8 2.02E-07 5.15E-08 1.33E-07 3.39E-07 3.30E-08
9 2.88E-07 5.66E-08 1.26E-07 1.72E-07 1.95E-07
10 2.44E-07 3.82E-08 1.56E-07 2.73E-07 1.99E-07
11 2.59E-07 4.77E-09 1.36E-07 2.24E-07 1.68E-07
12 2.62E-07 2.29E-07 1.19E-07 1.73E-07 2.27E-07
13 2.94E-07 7.82E-08 1.38E-07 2.45E-07 1.57E-07
14 2.38E-07 1.42E-07 6.61E-08 2.43E-07 1.89E-07
15 2.71E−07 3.40E−08 3.87E−08 3.09E−07 2.76E−07
16 2.75E−07 6.10E−09 8.38E−08 2.80E−07 3.30E−07
17 3.10E−07 5.90E−09 1.51E−08 1.72E−07 1.57E−07
18 2.83E−07 6.69E−08 1.02E−07 1.78E−07 3.80E−08
19 2.17E−07 6.36E−08 1.18E−07 2.28E−07 1.94E−07
20 1.71E−07 4.84E−09 1.26E−07 3.02E−07 2.86E−07
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In FLANN-LMS: Learning rate ( � ): 0.6, No. of iteration 
(Ni): 10, No. of weights: 90 and Activation function: tanh.

In FLANN-PSO: Learning rate ( � ): 0.6, No. of itera-
tion (Ni): 20, No. of feature (Fe): 20, cognitive parameter: 

c1 = c2 = 2 , Population size (Ps): 45, Inertia rate: 0.9, No. 
of weights: 90 and Activation function: tanh.

In FLANN-TLBO: Population size (Ps): 45, No. of itera-
tion (Ni): 30, No. of feature (Fe): 20, No. of weights: 90 and 
Activation function: tanh.

In FLANN-BWO: Population size (Ps): 45, No. of itera-
tion (Ni): 100, No. of feature (Fe): 20, Procreating rate (PP): 
0.6, Cannibalism rate (CR): 0.675, Mutation rate (PM): 0.4, 
No. of weights: 90 and Activation function: tanh.

In MLP-BP: Learning rate ( � ): 0.6, No. of iteration (Ni): 
20, No. of layer: 3, Node: 5-3-1, No. of weights: 90 and 
Activation function: tanh.

To study the effectiveness of the proposed model, 5000 
samples are taken. In Fig. 11, it is shown that the FLANN-
BWO model has an average MSE of 2.28E−07 after 100 
iterations and the corresponding CPU time 382.422 s. The 
FLANN-TLBO model has an average MSE of 2.7498E−08 
after 30 iterations and CPU time 462.02 s as displayed in 
Fig. 13. But, the FLANN-PSO and MLP-BP models have 
average MSE of 1.3945E−08 and 1.1470E−07, respec-
tively, after 20 iterations each and corresponding CPU time 
is 782.43 s and 8.96 s, respectively, as presented in Figs. 15 
and 19. The gradient-based FLANN-LMS model shown in 
Fig. 17 has an average MSE of 2.47E−07 after 10 itera-
tions and CPU time of 4.15 s, which is the lowest among 
others. By taking the proposed model with different bio-
inspired algorithms, the value of MSE has been reduced 
from 1.1470E−07 to 2.7498E−08, as listed in Table 4. After 
training of the proposed model, the best set of 90 weights, 
which represents the identified model of the Maglev system, 
is listed in Table 6. The fitting and MSE curves of all the 
models are shown in Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18 

Table 6   The best sets of weight 
from FLANN-TLBO model 
(W1 – W90)

W1 0.435779 W19 0.827147 W37 0.155891 W55 0.264486 W73 0.914621

W2 0.682444 W20 0.698345 W38 0.112564 W56 0.82409 W74 0.79115
W3 0.773512 W21 0.320443 W39 0.492218 W57 0.25293 W75 0.958493
W4 − 0.00529 W22 0.953393 W40 0.953885 W58 0.938268 W76 0.787987
W5 0.781096 W23 0.037445 W41 0.334814 W59 0.358586 W77 0.16796
W6 0.500079 W24 0.306598 W42 0.579984 W60 0.204795 W78 0.98138
W7 − 0.03474 W25 0.249404 W43 0.218814 W61 0.258882 W79 1.066246
W8 0.146218 W26 0.633354 W44 0.883247 W62 0.623441 W80 0.81099
W9 0.414602 W27 0.663029 W45 0.387094 W63 0.480284 W81 0.889997
W10 0.875391 W28 0.054693 W46 0.637974 W64 0.219913 W82 0.825227
W11 0.524488 W29 0.357577 W47 0.831112 W65 0.699049 W83 0.832609
W12 0.787741 W30 0.31339 W48 1.022958 W66 0.453451 W84 0.156097
W13 0.303452 W31 0.514109 W49 1.091364 W67 0.417878 W85 0.969134
W14 0.710593 W32 0.577152 W50 0.679307 W68 0.785315 W86 0.955765
W15 0.036209 W33 0.622466 W51 0.270734 W69 0.153927 W87 0.484031
W16 0.281128 W34 0.268449 W52 0.281422 W70 0.625255 W88 0.798993
W17 0.050205 W35 0.672411 W53 0.389655 W71 0.621751 W89 0.140657
W18 0.100993 W36 0.648091 W54 0.851318 W72 0.248435 W90 0.420589

 Fig. 18   Identified model response with MLP-BP

 Fig. 19   MSE plot of MLP-BP
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and 19. The comparative results of MSE and the MSE plot 
are provided for various test runs in Table 5 and Fig. 20.

Here, Ni is the number of iteration, Ps is the number of 
population, Fe is the number of feature and Nt is the number 
of input for training. From the Big O Notation, it shows that 
the FLANN-LMS and MLP-BP have less time complexity 
than the other three algorithms as shown in Table 4. For 
investigating the performance objectively, the Mean Squares 
Error (MSE) is considered as the performance metric. The 
average values of MSE for all the five models by running 
them for 20 independent test runs are shown in Table 4. The 
MSE values for all the models, for each test run in histo-
gram, are shown in Fig. 20. It is clear from Table 4 that the 
MSE values of the FLANN-TLBO algorithm are lowest as 
compared to others, which signify the superior performance 
over the other four competitive networks.

It is depicted from Fig. 21 that the predicted value does 
not match with the actual output and a very large gap exists. 

Hence, the performance is highly unsatisfactory for the 
FLANN-LMS network. There exists high nonlinearity in the 
data of the Maglev system, and hence, the result is highly 
discouraging. The results of the FLANN-TLBO are found 
to be the most matched one as compared to the other four 
networks.

From Figs. 21 and 22, it is demonstrated that the response 
of the FLANN-TLBO model replicates the response of the 
real-time Maglev system and hence it is the best among all 
other competitive models. The performance of the algo-
rithm also depends on the number controlling parameters 
and number of steps associated with weight updation. It 
is because these two parameters increase the computation 
time and the computational complexity. From Table 4, it 
is observed that the FLANN-LMS and FLANN-PSO have 
taken 4.15 s and 782.43 s CPU time, respectively, which are 
the lowest and the highest values. The recently developed 
BWO algorithm-based FLANN network required 382.422 s. 
The LMS algorithm have one step weight updation with one 

Fig. 20   Comparative plot of MSE in various test runs

 Fig. 21   Comparative identified model response  Fig. 22   Comparative error plot
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 Fig. 23   Control of actual Mag-
lev system and identified model 
using Fuzzy PID controller

 Fig. 24   Comparative results of Maglev system and identified model with a Fuzzy PID controller

Table 7   Minimum wins needed 
for the two-tailed sign test at 
� = 0.05 and� = 0.01

No. of cases 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

� = 0.05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
� = 0.01 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17

Table 8   Critical values obtained for the two-tailed sign tests at 
� = 0.05 and � = 0.01 using MSE metric as a triumphant parameter

TLBO BWO PSO LMS MLP-BP

Wins ( +) 20 18 19 17
Loss (−) 0 2 1 3
Detected difference � = 0.05 � = 0.05 � = 0.05 � = 0.05

Table 9   Sign test using MSE metric as a triumphant parameter

Comparison p value h value

TLBO with BWO 0.0008 1
TLBO with PSO 0.0004 1
TLBO with LMS 0.0009 1
TLBO with BP 0.0026 1
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controlling parameter, the PSO have one step weight upda-
tion with three controlling parameters and the MLP have one 
step weight updation with three controlling parameters. The 
recently developed BWO algorithm have two steps weight 
updation with three controlling parameters for which it takes 
higher time and computational complexity. The FLANN-
TLBO model involves two-updation process during the 
teaching and the learning phases, and hence, it takes more 
time of 462.02 s.

7.2 � Validation of Identified Model

The best identified FLANN-TLBO model is chosen for the 
validation purpose. The identified Maglev system obtained 
from the optimal 90 weights is shown in Table 6. This 
model is controlled and validated by using Fuzzy PID con-
troller with proper choice of the controller parameters. The 
FLANN-TLBO model having the optimal set of weights 
is shown in Table 6. The Fuzzy PID controller is used to 
control both the actual Maglev and  the identified model to 
investigate the response as shown in Fig. 23.

The range of membership functions of the Fuzzy PID 
controller is defined from − 1 to 1, as shown in Figs. 8 and 
9. The best responses are obtained after proper tuning of 
the Fuzzy PID controller with the values of kp, ki and kd are 
− 4, − 2 and − 0.2. From Fig. 24, it has been observed that 
the Fuzzy PID-controlled identified model and the actual 
Maglev system exhibit the same response.

7.3 � Nonparametric Statistical Tests

To validate the dominance of the FLANN-TLBO network, 
the pairwise sign test and Wilcoxon signed-rank test are 
carried out. In fact, the sign test and the Wilcoxon signed-
rank test are two well-known nonparametric statistical tests 
proposed for pairwise comparison of the two heuristics 
approaches. Here, we have carried out the test for 20 runs of 
each algorithm to justify a fair comparison. The results are 
listed in Table 8 by considering the average value of MSE 
as the winning parameter. The minimum number of wins 
required to obtain � = 0.05 and� = 0.01 levels of signifi-
cance for one algorithm over another is shown in Table 7. It 
is observed in Table 5 that the FLANN-TLBO model shows 
dominance over all the three other models with a signifi-
cance of � = 0.05.

It is observed from the performance measures of Table 8 
that the TLBO shows a significant improvement over the 
BWO, PSO, LMS and MLP-BP algorithms with a level of 
significance � = 0.05 by taking the detection rate as the win-
ning parameter, and the p value and h value for the sign test 
using the MSE metric as a triumphant parameter listed in 
Table 9. The p value and h value represent the superiority of 
the algorithm over the other competitive algorithms. If the 
p value is less than the level of significance � = 0.05 and h 
value is 1, then the proposed algorithm is superior over the 
other and the null hypothesis can be rejected. If the p value 
is greater than the level of significance � = 0.05 and h value 
is 0, then the proposed algorithm is considered to be inef-
ficient. Similarly, the Wilcoxon signed-rank test, which is 
similar to the paired t test in statistical procedure, and nor-
mally applied to detect the dominance behaviors between the 
two algorithms, is also performed. The performance com-
parison of all the algorithms is listed in Table 10. The results 
presented in Tables 9 and 10 reveal the superiority of the 
TLBO over other competitive algorithms.

To study the supremacy and repeatability of the obtained 
response of the network a nonparametric Friedman test is 
also performed by using the MATLAB. Table 11 shows the 
average rank of the different networks used for identification, 
which signifies that the lower rank networks have higher 
accuracy and performance. The Friedman test parameters 
are given in Table 12, and the critical value is obtained as 
1.6214E−11 from the Friedman test. A null hypothesis con-
cept emerges, if the critical value is less than the significance 

Table 10   Wilcoxon signed test using MSE metric as a triumphant 
parameter

Comparison P value h value

TLBO with BWO 0.0001 1
TLBO with PSO 0.0025 1
TLBO with LMS 0.0001 1
TLBO with BP 0.0003 1

Table 11   Friedman test rank table

Methods BWO TLBO PSO LMS BP

Mean ranks 17 5.2 8.2 17.2 12.4

Table 12   Friedman test 
parameter

Source Sum of 
square (SS)

Degree of free-
dom (DOF)

Mean square (MS) Chi-square Critical value (p)

Columns 141.1 4 35.275 56.44 1.6214E−11
Error 58.9 76 0.775
Total 200 99
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level, i.e., � = 0.05 and it can be rejected. Hence, the domi-
nance of the proposed algorithm over other competitive 
algorithms has been confirmed by performing the sign test, 
Wilcoxon signed-rank test and Friedman test. A null hypoth-
esis concept comes, if the critical value (p value) is less than 
the significance level, i.e., � = 0.05 and it can be rejected. 
The result obtained reveals the supremacy of the TLBO over 
the others.

8 � Conclusion

This article proposed a FLANN-TLBO model that yields 
improved identification and implementation of the Maglev 
plant. The performance of the TLBO-based FLANN model 
is compared with that of the other ANN-based models, 
i.e., MLP-BP, FLANN-LMS, FLANN-PSO and FLANN-
BWO. The estimated models have been compared in terms 
of MSE, CPU time, and the response matching capability 
of the Maglev system. From the simulations, it is perceived 
that the proposed FLANN-TLBO model provides superior 
identification model of the actual Maglev system. The vali-
dation of the proposed FLANN-TLBO model is carried 
out by comparing its performance with the actual Maglev 
system under identical conditions. The results demonstrate 
improved response matching of the identified model and 
the actual system. Moreover, the statistical tests validate 
the dominance of the FLANN-TLBO network over others. 
The outcomes of statistical testing reveal the supremacy of 
the TLBO algorithm in comparison with other competitive 
algorithms with a significance level of � = 0.05 . Further, 
other variants of the neural network and nature-inspired 
algorithm can be applied for achieving better models of 
complex systems.
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Chapter 11

Single-source precursors for main group metal sulfides 

and solar cell applications

Running head: Single-source precursors

11.1 Introduction

Metal sulfides are a class of substances known for their unique chemical and physical properties [1–3]. Their 

semiconducting nature means that they have potential in various applications. Although a variety of methods are known 

for the syntheses of metal sulfides, traditional methods such as solid-state reaction, chemical vapor deposition (CVD), 

and homogeneous precipitation methods suffer from difficulties such as temperature requirements, long reaction times, 

formation of impure products, mixed phases, etc. [1–6]. Compared to bulk materials, thin films of main group metal 

sulfides play a critical role in electronic applications such as solar cells, optical fiber communications, and full-color 

displays. The purity of precursors is a crucial requirement in order to limit contamination in deposited thin films [6–9]. 

An alternative and energy-efficient method for the synthesis of thin films is the single molecular source precursor or 

single-source precursor (SSP) approach where the organic/metal fragments present in the metal complexes of sulfur-

containing ligands are removed and pure phase metal sulfides are reassembled under mild conditions[Instruction: 

reference span should be [1-10] instead of [1-9] .] [1–9].

Dual/multiple-source precursor approaches are traditionally involved in the synthesis of bulk/thin films of metal 

sulfides, however, single-source precursors have been suggested as a method for lowering the growth temperature. The 

desired synthetic reaction pathway involves adsorption of the precursor without breaking the core M-S bond but with 

loss of the ancillary ligands. Single-source precursors potentially display a range of advantages over conventional CVD 

precursors, such as limited pre-reaction owing to only one precursor, reduced toxicity, possible lower temperature 

growth as well as possible stability in air and moisture. However, commercialization of single-source precursors is still a 

challenge due to their disadvantages such as difficulties in control of stoichiometry of the final product, growth of 

ternary and quaternary materials, low volatility, and prevention of epitaxial growth of polynuclear decomposition 

fragments due to low surface mobility. Herein, we present the various methods for the synthesis of bulk materials and 

thin films of main group metal sulfides from single-source precursor and their use for application in solar cells.

11.2 Synthetic methods

The essential requirements for a suitable precursor are synthetic ease, ability to be synthesized in good yield and purity, 

high volatility, stability under ambient conditions, and decomposition at elevated temperatures. Purity requires 
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